Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Xét ΔABH vuông tại H và ΔCAH vuông tại H có
góc HAB=góc HCA
=>ΔABH đồng dạng vơi ΔCAH

a) xét ▲ABD VÀ▲ EBD có
BD là cạnh chung
góc ABD= góc DBE
AB= BE
nên Δ ABD=Δ EBD (c.g.c)
b) vì Δ ABD=Δ EBD (cmt)
→ góc BED= góc BAC (2 góc tương ứng)
c) ta có:
AH VUÔNG VỚI BC
→ góc AHE = 90o (1)
góc bed = 90o (cmt) (2)
từ (1) và (2) suy ra DE song song với AH (2 đường thẳng cùng vuông góc với 1 đường thẳng)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: ta có: ΔABC\(\sim\)ΔHBA
nên BA/BH=BC/BA
hay \(BA^2=BH\cdot BC\)
a.Xét tam giác ABC và tam giác HBA, có:
^B: chung
^BAC = ^BHA = 90 độ
Vậy tam giác ABC đồng dạng tam giác HBA (g.g)
b.\(\rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)
\(\Leftrightarrow AB^2=BH.BC\left(đfcm\right)\) (1)
c.Áp dụng định lý pitago \(\Rightarrow BC=\sqrt{6^2+10^2}=2\sqrt{34}\left(cm\right)\)
(1) \(\Leftrightarrow6^2=2\sqrt{34}BH\)
\(\Leftrightarrow BH=\dfrac{9\sqrt{34}}{17}\left(cm\right)\)
Áp dụng định lý pitago trong tam giác ABH \(\Rightarrow AH=\sqrt{6^2-\left(\dfrac{9\sqrt{34}}{17}\right)^2}=\dfrac{15\sqrt{34}}{17}\left(cm\right)\)

a) Xét tam giác HAB và tam giác ABC , có :
A^ = H^ = 90o
B^ : góc chung
=> tam giác ABH ~ tam giác CBA ( g.g)
ADĐL pitago vào tam giác vuông ABC , có :
AB2 + AC2 = BC2
=> 62 + 82 = BC2
=> BC2 = 100
=> BC=10
Vì tam giác ABH ~ tam giác CBA ( cmt)
=> ABBC����= AHAC����
=> AH . BC = AB . AC
=> AH.10= 6.8
=> AH = 4,8
b)
Ta có :
A^1 + B^ = 90o
B^ + C^ = 90o
=> A^1 = C^
Xét tam giác HAC , và tam giác HAB , có :
A^1 = C^ ( cmt )
H^1 = H^2 = 90o
=> tam giác HAB ~ tam giác HCA ( g.g)
=> AHHC����= HBHA����=> AH2 = HC . HB

d) Dễ thấy \(E\)là trực tâm của tam giác \(ACE\)(do là giao của hai đường cao \(DK,CH\)).
suy ra \(AE\perp CD\).
Để chứng minh \(BM//CD\)ta sẽ chứng minh \(AE\perp BM\).
Ta có:
\(\widehat{CAH}=\widehat{CBA}\)(vì cùng phụ với góc \(\widehat{ACB}\))
suy ra \(\widehat{CAE}=\widehat{ABM}\)
mà \(\widehat{CAE}+\widehat{EAB}=\widehat{CAB}=90^o\Rightarrow\widehat{ABM}+\widehat{EAB}=90^o\Rightarrow\widehat{AMB}=90^o\)
do đó \(BM\perp AE\).
Từ đây ta có đpcm.
a) Tam giác ABC vuông tại A có ^B+^C=90
Tam giác ABH vuông tại H có ^B+^BAH=90
=> ^BAH=^ACB
b)Xét tam giác ABH và Tam giác CAH có:
^AHB=^CAB
^BAH=^BCA(CM câu a)
=> tam giác ABH đồng dạng tam giác CAH