Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có \(1+2+3+4+5=15\) và \(3+4+5+6+7=25\) nên tổng các chữ số của số được lập luôn nằm giữa 15 và 25
Mà số đó chia hết cho 9 nên tổng 5 chữ số phải là 18 (là số duy nhất nằm giữa 15 và 25 và chia hết cho 9)
Các bộ số thỏa mãn có tổng 18: \(\left(1;2;4;5;6\right);\left(1;2;3;5;7\right)\)
Số số được lập: \(3.4!+1.4!=96\) số

Chọn 2 chữ số lẻ từ 4 chữ số lẻ và hoán vị chúng: \(A_4^2=12\) cách
2 chữ số lẻ tạo ra 3 khe trống.
Chọn 2 chữ số từ 5 chữ số còn lại: \(C_5^2=10\) cách
Xếp 2 chữ số nói trên vào 3 khe trống: \(A_3^2=6\) cách
Có: \(12.10.6=720\) số

Chọn D
Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}
Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}
+ Số các số tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng
a
b
c
d
e
¯
(a có thể bằng 0), đồng thời ba chữ số chẵn đứng liền nhau là
(để ý: có 3 cách xếp sao cho ba chữ số chẵn đứng liền nhau là
+ Số các tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng
0
b
c
d
e
¯
, đồng thời ba chữ số chẵn đứng liền nhau là
(để ý: có 1 cách xếp sao cho hai chữ số chẵn còn lại đứng liền với số 0 là {b;c})
Suy ra, số các số tự nhiên thỏa đề ra là

Ta có 5 cách chọn hàng chục và bốn cách chọn hàng đơn vị nên ta có 4*5=20 số

Chọn A
Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}.
Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}
+ Số các tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng
a
b
c
d
e
¯
(a có thể bằng 0), đồng thời ba chữ số chẵn đứng liền nhau, hai chữ số lẻ đứng liền nhau là
(để ý: có 2 cách xếp 3 chữ số chẵn thỏa đề {a,b,c}, {c,d,e})
+ Số các tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng
0
b
c
d
e
¯
, đồng thời ba chữ số chẵn đứng liền nhau, hai chữ số lẻ đứng liền nhau là
(để ý: có 1 cách xếp sao cho hai chữ số chẵn còn lại đứng liền với số 0 là {b,c}).
Suy ra, số các số tự nhiên thỏa đề ra là

Chọn B.
Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}.
Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}
+ Số các tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng
a
b
c
d
e
¯
(a có thể bằng 0), đồng thời hai chữ số lẻ đứng liền nhau là
(để ý: có 4 cách xếp sao cho hai chữ số lẻ đứng liền nhau là
+ Số các số tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng
0
b
c
d
e
¯
, đồng thời hai chữ số lẻ đứng liền nhau là
(để ý: có 3 cách xếp sao cho hai chữ số lẻ đứng liền nhau là
Suy ra, số các số tự nhiên thỏa đề ra là
Ta thấy tổng 5 chữ số nhỏ nhất là \(1+2+3+4+5=15\)
Tổng 5 chữ số lớn nhất là \(3+4+5+6+7=25\)
Do đó tổng của 5 chữ số luôn nằm nữa 15 và 25. Do đó tổng đó chia hết cho 9 nên nó chỉ có thể là 18
Mặt khác tổng của 7 chữ số là \(1+2+3+4+5+6+7=28\)
Để có được tổng 18 ta cần loại đi 2 chữ số có tổng bằng \(28-18=10\)
Do đó có các trường hợp: loại cặp 3;7 còn 5 số 1;2;4;5;6 hoặc loại cặp 4;6 còn 5 số 1;2;3;5;7
Số số thỏa mãn:
\(3.4!+1.4!=96\) số
cái này đã đảm bảo là số chẵn chưa ạ?