Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Nhat Linh bị nhầm câu cuối:
\(\dfrac{y+b\sqrt{y}}{b.\sqrt{y}}=\dfrac{y\sqrt{y}+b.y}{b.y}=\dfrac{\sqrt{y}+b}{b}.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{2ab}{\sqrt{a}-\sqrt{b}}=\dfrac{2ab\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{2ab\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\)
\(\dfrac{1}{\sqrt{x}-\sqrt{y}}=\dfrac{\sqrt{x}+\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{\sqrt{x}+\sqrt{y}}{x-y}\)
\(\dfrac{3}{\sqrt{10}+\sqrt{7}}=\dfrac{3\left(\sqrt{10}-\sqrt{7}\right)}{\left(\sqrt{10}+\sqrt{7}\right)\left(\sqrt{10}-\sqrt{7}\right)}=\dfrac{3\left(\sqrt{10}-\sqrt{7}\right)}{10-7}=\dfrac{3\left(\sqrt{10}-\sqrt{7}\right)}{3}=\sqrt{10}-\sqrt{7}\)
\(\dfrac{2}{\sqrt{6}-\sqrt{5}}=\dfrac{2\left(\sqrt{6}+\sqrt{5}\right)}{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}=\dfrac{2\left(\sqrt{6}+\sqrt{5}\right)}{6-5}=2\left(\sqrt{6}+\sqrt{5}\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 50:
\(\dfrac{5}{\sqrt{10}}=\dfrac{5\sqrt{10}}{10}=\dfrac{\sqrt{10}}{2}\)
\(\dfrac{5}{2\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)
\(\dfrac{1}{3\sqrt{20}}=\dfrac{1}{6\sqrt{5}}=\dfrac{\sqrt{5}}{30}\)
\(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}=\dfrac{\sqrt{2}\left(2+\sqrt{2}\right)}{5\sqrt{2}}=\dfrac{2+\sqrt{2}}{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
+ Ta có:
3√3+1=3(√3−1)(√3+1)(√3−1)=3√3−3.1(√3)2−1233+1=3(3−1)(3+1)(3−1)=33−3.1(3)2−12
=3√3−33−1=3√3−32=33−33−1=33−32.
+ Ta có:
2√3−1=2(√3+1)(√3−1)(√3+1)=2(√3+1)(√3)2−1223−1=2(3+1)(3−1)(3+1)=2(3+1)(3)2−12
=2(√3+1)3−1=2(√3+1)2=√3+1=2(3+1)3−1=2(3+1)2=3+1.
+ Ta có:
2+√32−√3=(2+√3).(2+√3)(2−√3)(2+√3)=(2+√3)222−(√3)22+32−3=(2+3).(2+3)(2−3)(2+3)=(2+3)222−(3)2
=22+2.2.√3+(√3)24−3=22+2.2.3+(3)24−3=4+4√3+31=(4+3)+4√31=4+43+31=(4+3)+431
=7+4√31=7+4√3=7+431=7+43.
+ Ta có:
b3+√b=b(3−√b)(3+√b)(3−√b)b3+b=b(3−b)(3+b)(3−b)
=b(3−√b)32−(√b)2=b(3−√b)9−b;(b≠9)=b(3−b)32−(b)2=b(3−b)9−b;(b≠9).
+ Ta có:
p2√p−1=p(2√p+1)(2√p−1)(2√p+1)p2p−1=p(2p+1)(2p−1)(2p+1)
=p(2√p+1)(2√p)2−12=p(2√p+1)4p−1=p(2p+1)(2p)2−12=p(2p+1)4p−1=2p√p+p4p−1
Bài 51 trang 30 SGK Toán 9 tập 1 - loigiaihay.com
#Ye Chi-Lien
\(\frac{3}{\sqrt{3}+1}=\frac{3\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{3\sqrt{3}-3}{3-1}=\frac{3\sqrt{3}-3}{2}\)
\(\frac{2}{\sqrt{3}-1}=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=\frac{2\left(\sqrt{3}+1\right)}{3-1}=\sqrt{3}-1\)
\(\frac{2+\sqrt{3}}{2-\sqrt{3}}=\frac{\left(2+\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3}=\left(2+\sqrt{3}\right)^2=4+4\sqrt{3}+3=7+4\sqrt{3}\)
\(\frac{b}{3+\sqrt{b}}=\frac{b\left(3-\sqrt{b}\right)}{\left(3+\sqrt{b}\right)\left(3-\sqrt{b}\right)}=\frac{b\left(3-\sqrt{b}\right)}{9-b}\)
\(\frac{p}{2\sqrt{p}-1}=\frac{p\left(2\sqrt{p}+1\right)}{\left(2\sqrt{p}-1\right)\left(2\sqrt{b}+1\right)}=\frac{p\left(2\sqrt{b}+1\right)}{4p-1}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
có nghĩa khi
và
Nếuthì
Nếuthì
- Tương tự như vậy ta có:
Nếuthì
Nếuthì
- Ta có:
Điều kiện để căn thức có nghĩa làhay
Do đó:
Nếu b>0 thì
Nếuthì
- Điều kiện để
có nghĩa là
hay
Cách 1.
=
Cách 2. Biến mẫu thành một bình phương rồi áp dụng quy tắc khai phương một thương: - Điều kiện để
có nghĩa là
hay xy>0.
Do đó
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{5}{\sqrt{10}}=\frac{5\sqrt{10}}{10}=\frac{\sqrt{10}}{2}\)
\(\frac{5}{2\sqrt{5}}=\frac{10\sqrt{5}}{20}=\frac{\sqrt{5}}{2}\)
\(\frac{1}{3\sqrt{20}}=\frac{3\sqrt{20}}{180}=\frac{\sqrt{20}}{60}=\frac{2\sqrt{5}}{60}=\frac{\sqrt{5}}{30}\)
\(\frac{2\sqrt{2}+2}{5\sqrt{2}}=\frac{10\sqrt{2}\left(\sqrt{2}+1\right)}{50}=\frac{20+10\sqrt{2}}{50}=\frac{10\left(2+\sqrt{2}\right)}{50}=\frac{2+\sqrt{2}}{5}\)
\(\frac{y+b\sqrt{y}}{b\sqrt{y}}=\frac{y\left(\sqrt{y}+b\right)}{by}=\frac{\sqrt{y}+b}{b}\)
+ Ta có:
5√10=5.√10√10.√10=5√10(√10)2=5√1010510=5.1010.10=510(10)2=51010
=5.√105.2=5.105.2=√102=102.
+ Ta có:
52√5=5.√52√5.√5=5√52.(√5.√5)=5√52(√5)2525=5.525.5=552.(5.5)=552(5)2
=5√52.5=√52=552.5=52.
+ Ta có:
13√20=1.√203√20.√20=√203.(√20.√20)=√203.(√20)21320=1.20320.20=203.(20.20)=203.(20)2
=√203.20=√22.560=2√560=2√52.30=√530=203.20=22.560=2560=252.30=530.
+ Ta có:
(2√2+2)5.√2=(2√2+2).√25√2.√2=2√2.√2+2.√25.(√2)2(22+2)5.2=(22+2).252.2=22.2+2.25.(2)2
=2.2+2√25.2=2(2+√2)5.2=2+√25=2.2+225.2=2(2+2)5.2=2+25.
+ Ta có:
y+b√yb√y=(y+b√y).√yb√y.√y=y√y+b√y.√yb.(√y)2y+byby=(y+by).yby.y=yy+by.yb.(y)2
=y√y+b(√y)2by=y√y+byby=yy+b(y)2by=yy+byby
=y(√y+b)b.y=√y+bb=y(y+b)b.y=y+bb.
Cách khác:
y+b√yb√y=(√y)2+b√yb√yy+byby=(y)2+byby=√y(√y+b)b√y=√y+bb
Nguồn : Bài 50 trang 30 SGK Toán 9 tập 1 - loigiaihay.com
#Ye Chi-Lien
![](https://rs.olm.vn/images/avt/0.png?1311)
+ Ta có:
2√6−√5=2(√6+√5)(√6−√5)(√6+√5)26−5=2(6+5)(6−5)(6+5)
=2(√6+√5)(√6)2−(√5)2=2(√6+√5)6−5=2(6+5)(6)2−(5)2=2(6+5)6−5
=2(√6+√5)1=2(√6+√5)=2(6+5)1=2(6+5).
+ Ta có:
3√10+√7=3(√10−√7)(√10+√7)(√10−√7)310+7=3(10−7)(10+7)(10−7)
=3(√10−√7)(√10)2−(√7)2=3(10−7)(10)2−(7)2=3(√10−√7)10−7=3(10−7)10−7
=3(√10−√7)3=√10−√7=3(10−7)3=10−7.
+ Ta có:
1√x−√y=1.(√x+√y)(√x−√y)(√x+√y)1x−y=1.(x+y)(x−y)(x+y)
=√x+√y(√x)2−(√y)2=√x+√yx−y=x+y(x)2−(y)2=x+yx−y
+ Ta có:
2ab√a−√b=2ab(√a+√b)(√a−√b)(√a+√b)2aba−b=2ab(a+b)(a−b)(a+b)
=2ab(√a+√b)(√a)2−(√b)2=2ab(√a+√b)a−b=2ab(a+b)(a)2−(b)2=2ab(a+b)a−b.
\(\frac{2}{\sqrt{6}-\sqrt{5}}=\frac{2\left(\sqrt{6}+\sqrt{5}\right)}{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}=\frac{2\left(\sqrt{6}+\sqrt{5}\right)}{6-5}=2\left(\sqrt{6}+\sqrt{5}\right)\)
\(\frac{3}{\sqrt{10}+\sqrt{7}}=\frac{3\left(\sqrt{10}-\sqrt{7}\right)}{\left(\sqrt{10}-\sqrt{7}\right)\left(\sqrt{10}+\sqrt{7}\right)}=\frac{3\left(\sqrt{10}-\sqrt{7}\right)}{10-7}=\sqrt{10}-\sqrt{7}\)
\(\frac{1}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x}+\sqrt{y}}{x-y}\)
\(\frac{2ab}{\sqrt{a}-\sqrt{b}}=\frac{2ab\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ĐS: .
b) ĐS: Nếu thì
Nếu ab
c) ĐS:
d)
Nhận xét. Nhận thấy rằng để có nghĩa thì
Do đó
. Vì thế có thể phân tích tử thành nhân tử.
a) ĐS: .
b) ĐS: Nếu thì
Nếu ab
c) ĐS:
d)
Nhận xét. Nhận thấy rằng để có nghĩa thì
Do đó
. Vì thế có thể phân tích tử thành nhân tử.
ĐS:![This is the rendered form of the equation. You can not edit this directly. Right click will give you the option to save the image, and in most browsers you can drag the image onto your desktop or another program.](http://latex.codecogs.com/gif.latex?%5Cfrac%7B3%28%5Csqrt%7B3%7D-1%29%7D%7B2%7D%3B%20%5Csqrt%7B3%7D+1%3B%207+4%5Csqrt%7B3%7D%3B%5Cfrac%7Bb%283-%5Csqrt%7Bb%7D%29%7D%7B9-b%7D%3B%20%5Cfrac%7Bp%282%5Csqrt%7Bp%7D+1%29%7D%7B4p-1%7D.)