loading...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2023

a) √8/(√5 - √3)

= 2√2.(√5 + √3)/[(√5 - √3)(√5 + √3)]

= 2√2(√5 + √3)/2

= √10 + √6

b) √[(2 - √3)/(2 + √3)]

= √{(2 - √3)²/[(2 + √3)(2 - √3)]}

= (2 - √3)/(4 - 3)

= 2 - √3

AH
Akai Haruma
Giáo viên
14 tháng 8 2023

Lời giải:

a. 

\(\frac{\sqrt{8}}{\sqrt{5}-\sqrt{3}}=\frac{\sqrt{8}(\sqrt{5}+\sqrt{3})}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})}=\frac{\sqrt{8}(\sqrt{5}+\sqrt{3})}{5-3}=\sqrt{2}(\sqrt{5}+\sqrt{3})=\sqrt{10}+\sqrt{6}\)

b.

\(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}=\sqrt{\frac{(2-\sqrt{3})^2}{(2+\sqrt{3})(2-\sqrt{3})}}=\sqrt{\frac{(2-\sqrt{3})^2}{2^2-3}}=\sqrt{(2-\sqrt{3})^2}=|2-\sqrt{3}|=2-\sqrt{3}\)

8 tháng 8 2023

Chắc câu c quá, tại tổng 2 ô vuông của hình chữ nhật có 10 chấm tròn. =)

8 tháng 8 2023

Em nghĩ là câu c vì thấy tổng của các chấm tròn ở mỗi miếng đều là 10.

14 tháng 8

Gọi \(\angle A O C = \alpha\). Đây là góc ở tâm chắn cung \(A C\)

Quan sát hình: cung \(B D\) gồm 3 lần liên tiếp cung \(A C\) (từ B → C, C → A, A → D)

Góc ở tâm \(\angle B O D\) chắn cung \(B D\) nên:

\(\angle B O D = 3 \times \angle A O C .\)

Vậy \(\angle B O D = 3 \angle A O C\)

NV
6 tháng 3 2023

1.

a. Em tự giải

b.

\(\left\{{}\begin{matrix}2x+y=4m-1\\3x-2y=-m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x+2y=8m-2\\3x-2y=-m+9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+7\\y=\dfrac{3x+m-9}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+1\\y=2m-3\end{matrix}\right.\)

Để \(x+y=7\Rightarrow m+1+2m-3=7\)

\(\Rightarrow3m=9\Rightarrow m=3\)

NV
6 tháng 3 2023

2.

a. Em tự giải

b.

Phương trình có 2 nghiệm khi:

\(\Delta'=\left(m+1\right)^2-\left(2m+10\right)=m^2-9\ge0\)

\(\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m+10\end{matrix}\right.\)

Ta có:

\(P=x_1^2+x_2^2+8x_1x_2=\left(x_1+x_2\right)^2+6x_1x_2\)

\(=4\left(m+1\right)^2+6\left(2m+10\right)=4m^2+20m+64\)

\(=4\left(m^2+5m+6\right)+40=4\left(m+2\right)\left(m+3\right)+40\)

Do \(\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\) \(\Rightarrow\left(m+2\right)\left(m+3\right)\ge0\)

\(\Rightarrow P\ge40\)

Vậy \(P_{min}=40\) khi \(m=-3\)

(Nếu bài này giải là \(4m^2+20m+64=\left(2m+5\right)^2+39\ge39\) là sai vì dấu = khi đó xảy ra tại \(m=-\dfrac{5}{2}\) ko thỏa mãn điều kiện \(\Delta\) để pt có nghiệm)

3 tháng 8 2023

Đáp án b

Các hình màu xanh là phản chiếu của các hình máu cam trong gương.

3 tháng 8 2023

Nhìn sơ sơ đoán là chọn B

Kiểu 2 hình ở gần (đáy hình cam trên và đỉnh hình xanh dưới sẽ giống nhau), 2 hình còn lại giống nhau tại vị trí đỉnh trên hình cam và đáy dưới hình xanh

Xét một phân số trong tổng:

\(\frac{1}{\sqrt{k} + \sqrt{k + 1}}\)

Nhân cả tử và mẫu với \(\sqrt{k + 1} - \sqrt{k}\), ta được:

\(\frac{1}{\sqrt{k} + \sqrt{k + 1}} = \frac{\sqrt{k + 1} - \sqrt{k}}{\left(\right. \sqrt{k} + \sqrt{k + 1} \left.\right) \left(\right. \sqrt{k + 1} - \sqrt{k} \left.\right)} = \sqrt{k + 1} - \sqrt{k}\)

Vậy:

\(A=\left(\right.\sqrt{2}-\sqrt{1}\left.\right)+\left(\right.\sqrt{3}-\sqrt{2}\left.\right)+\cdots+\left(\right.\sqrt{n + 1}-\sqrt{n}\left.\right)\)

Cộng các hạng tử lại, ta thấy \(\sqrt{2}\) ở số hạng đầu bị trừ đi ở số hạng sau, \(\sqrt{3}\) cũng vậy,… chỉ còn:

\(A = \sqrt{n + 1} - \sqrt{1} = \sqrt{n + 1} - 1\)

Đáp số: \(\sqrt{n + 1} - 1\)

Tham khảo

NV
20 tháng 1 2024

a. Câu này đơn giản em tự giải

b.

Xét hai tam giác OIM và OHN có:

\(\left\{{}\begin{matrix}\widehat{OIM}=\widehat{OHN}=90^0\\\widehat{MON}\text{ chung}\\\end{matrix}\right.\) \(\Rightarrow\Delta OIM\sim\Delta OHN\left(g.g\right)\)

\(\Rightarrow\dfrac{OI}{OH}=\dfrac{OM}{ON}\Rightarrow OI.ON=OH.OM\)

Cũng từ 2 tam giác đồng dạng ta suy ra \(\widehat{OMI}=\widehat{ONH}\)

Tứ giác OAMI nội tiếp (I và A cùng nhìn OM dưới 1 góc vuông)

\(\Rightarrow\widehat{OAI}=\widehat{OMI}\)

\(\Rightarrow\widehat{OAI}=\widehat{ONH}\) hay \(\widehat{OAI}=\widehat{ONA}\)

c.

Xét hai tam giác OAI và ONA có:

\(\left\{{}\begin{matrix}\widehat{OAI}=\widehat{ONA}\left(cmt\right)\\\widehat{AON}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAI\sim\Delta ONA\left(g.g\right)\)

\(\Rightarrow\dfrac{OA}{ON}=\dfrac{OI}{OA}\Rightarrow OI.ON=OA^2=OC^2\) (do \(OA=OC=R\))

\(\Rightarrow\dfrac{OC}{ON}=\dfrac{OI}{OC}\)

Xét hai tam giác OCN và OIC có:

\(\left\{{}\begin{matrix}\dfrac{OC}{ON}=\dfrac{OI}{OC}\\\widehat{CON}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OCN\sim\Delta OIC\left(g.g\right)\)

\(\Rightarrow\widehat{OCN}=\widehat{OIC}=90^0\) hay tam giác ACN vuông tại C

\(\widehat{ABC}\) là góc nt chắn nửa đường tròn \(\Rightarrow BC\perp AB\)

Áp dụng hệ thức lượng trong tam giác vuông ACN với đường cao BC:

\(BC^2=BN.BA=BN.2BH=2BN.BH\) (1)

O là trung điểm AC, H là trung điểm AB \(\Rightarrow OH\) là đường trung bình tam giác ABC

\(\Rightarrow OH=\dfrac{1}{2}BC\)

Xét hai tam giác OHN và EBC có:

\(\left\{{}\begin{matrix}\widehat{OHN}=\widehat{EBC}=90^0\\\widehat{ONH}=\widehat{ECB}\left(\text{cùng phụ }\widehat{IEB}\right)\end{matrix}\right.\)  \(\Rightarrow\Delta OHN\sim\Delta EBC\left(g.g\right)\)

\(\Rightarrow\dfrac{OH}{EB}=\dfrac{HN}{BC}\Rightarrow HN.EB=OH.BC=\dfrac{1}{2}BC^2\)

\(\Rightarrow BC^2=2HN.EB\) (2)

(1);(2) \(\Rightarrow BN.BH=HN.BE\)

\(\Rightarrow BN.BH=\left(BN+BH\right).BE\)

\(\Rightarrow\dfrac{1}{BE}=\dfrac{BN+BH}{BN.BH}=\dfrac{1}{BH}+\dfrac{1}{BN}\) (đpcm)

NV
20 tháng 1 2024

loading...

Bài 3:

a: ΔOBC cân tại O

mà OI là đường cao

nên I là trung điểm của BC

Xét ΔBOD có

BI là đường cao

BI là đường trung tuyến

Do đó: ΔBOD cân tại B

=>BO=BD

ma BO=OD

nên BO=BD=OD

=>ΔBOD đều

=>\(\hat{BOD}=\hat{BDO}=\hat{OBD}=60^0\)

Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>\(\hat{BAD}+\hat{BDA}=90^0\)

=>\(\hat{BAD}=90^0-60^0=30^0\)

Xét ΔAIB vuông tại I và ΔAIC vuông tại I có

AI chung

IB=IC

Do đó: ΔAIB=ΔAIC

=>AB=AC

ΔAIB=ΔAIC

=>\(\hat{IAB}=\hat{IAC}\)

=>AI là phân giác của góc BAC

=>\(\hat{BAC}=2\cdot\hat{BAD}=2\cdot30^0=60^0\)

Xét ΔABC có AB=AC và \(\hat{BAC}=60^0\)

nên ΔABC đều

b: ΔOBD đều

=>BD=OB=R

ΔABD vuông tại B

=>\(BA^2+BD^2=AD^2\)

=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)

=>\(BA=R\sqrt3\)

=>\(BA=AC=BC=R\sqrt3\)


a: Xét (HA/2) có

ΔAEH nội tiếp

AH là đường kính

Do đó: ΔAEH vuông tại E

=>HE⊥AB tại E

Xét (HA/2) có

ΔAFH nội tiếp

AH là đường kính

Do đó: ΔAFH vuông tại F

=>HF⊥AC tại F

Xét ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC=AH^2\)

Ta có: \(AE\cdot AB=AF\cdot AC\)

=>\(\frac{AE}{AC}=\frac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có

\(\frac{AE}{AC}=\frac{AF}{AB}\)

Do đó: ΔAEF~ΔACB

b: Xét tứ giác AEHF có \(\hat{AEH}=\hat{AFH}=\hat{FAE}=90^0\)

nên AEHF là hình chữ nhật

=>\(\hat{AFE}=\hat{AHE}\)

\(\hat{AHE}=\hat{ABC}\left(=90^0-\hat{HAB}\right)\)

nên \(\hat{AFE}=\hat{ABC}\)

ΔOAC cân tại O

=>\(\hat{OAC}=\hat{OCA}=\hat{ACB}\)

\(\hat{AFE}+\hat{OAC}=\hat{ABC}+\hat{ACB}=90^0\)

=>AO⊥ FE

c: Xét (O) có

ΔAKH nội tiếp

AH là đường kính

Do đó: ΔAKH vuông tại K

=>HK⊥AT tại K

Xét ΔAHT vuông tại H có HK là đường cao

nên \(AK\cdot AT=AH^2\)

=>\(AK\cdot AT=AE\cdot AB\)

=>\(\frac{AK}{AE}=\frac{AB}{AT}\)

Xét ΔAKB và ΔAET có

\(\frac{AK}{AE}=\frac{AB}{AT}\)

góc KAB chung

Do đó: ΔAKB~ΔAET

=>\(\hat{AKB}=\hat{AET}\)

d: ta có: A,C,B,K cùng thuộc (O)

=>ACBK nội tiếp

=>\(\hat{ACB}+\hat{AKB}=180^0\)

\(\hat{AKB}+\hat{AKI}=180^0\) (hai góc kề bù)

nên \(\hat{IKA}=\hat{ICB}\)

Xét ΔIKA và ΔICB có

\(\hat{IKA}=\hat{ICB}\)

góc KIA chung

Do đó: ΔIKA~ΔICB

Gọi H là trực tâm của ΔABC

=>BH⊥AC; CH⊥AB; AH⊥BC

Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>BD⊥BA

mà CH⊥AB

nên CH//BD

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>CA⊥CD
mà BH⊥CA

nên BH//CD

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

=>BC cắt HD tại trung điểm của mỗi đường

mà X là trung điểm của BC

nên X là trung điểm của DH

=>DX đi qua H(1)

Xét (O) có

ΔBCE nội tiếp

BE là đường kính

Do đó: ΔBCE vuông tại C

=>CB⊥CE

mà AH⊥CB

nên AH//CE

Xét (O) có

ΔEAB nội tiếp

BE là đường kính

Do đó: ΔBAE vuông tại A

=>AE⊥AB

mà CH⊥AB

nên AE//CH

Xét tứ giác AHCE có

AH//CE

AE//CH

Do đó: AHCE là hình bình hành

=>AC cắt HE tại trung điểm của mỗi đường

mà Y là trung điểm của AC

nên Y là trung điểm của EH

=>EY đi qua H(2)

Xét (O) có

ΔFAC nội tiếp

FC là đường kính

Do đó: ΔFAC vuông tại A

=>AF⊥ AC

mà BH⊥AC

nên AF//BH

Xét (O) có

ΔFBC nội tiếp

FC là đường kính

Do đó: ΔFBC vuông tại B

=>BF⊥BC

mà AH⊥BC

nên AH//BF

Xét tứ giác AHBF có

AH//BF

AF//BH

Do đó: AHBF là hình bình hành

=>AB cắt HF tại trung điểm của mỗi đường

mà Z là trung điểm của AB

nên Z là trung điểm của FH

=>FZ đi qua H(3)

Từ (1),(2),(3) suy ra DX,EY,FZ đồng quy tại H