Trong không gian với hệ tọa độ Oxyz  ,cho tam giác OAB có A(-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 giờ trước (14:03)

Câu a:

125\(^5\) + 4.5\(^{12}\)

= 125\(^5\) + 4.(5\(^3\))\(^4\)

= 125\(^5\) + 4.125\(^4\)

= 125\(^4\).(125 + 4)

= 125\(^4\).129 ⋮ 129 (đpcm)

8 giờ trước (14:04)

a: \(125^5+4\cdot5^{12}\)

\(=\left(5^3\right)^5+4\cdot5^{12}\)

\(=5^{15}+4\cdot5^{12}=5^{12}\left(5^3+4\right)=5^{12}\cdot129\) ⋮129

b: \(1+7+7^2+\cdots+7^{101}\)

\(=\left(1+7\right)+\left(7^2+7^3\right)+\cdots+\left(7^{100}+7^{101}\right)\)

\(=\left(1+7\right)+7^2\left(1+7\right)+\cdots+7^{100}\left(1+7\right)\)

\(=8\left(1+7^2+\cdots+7^{100}\right)\) ⋮8

c: \(2+2^2+2^3+\cdots+2^{100}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+\cdots+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+\cdots+2^{97}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+\cdots+2^{97}\right)\) ⋮5

\(2+2^2+2^3+\cdots+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+\cdots+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+\cdots+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=31\cdot\left(2+2^6+\cdots+2^{96}\right)\) ⋮31

AH
Akai Haruma
Giáo viên
11 tháng 7 2017

Lời giải:

Thiết diện là một tam giác đều cạnh \(a\sqrt{3}\) nên \(2R=\sqrt{3}a\Rightarrow R=\frac{\sqrt{3}a}{2}\)

Do đó diện tích xq của hình nón là:

\(S_{xq}=\pi Rl=\frac{3a^2}{2}\pi\)

Đáp án C

Câu 1: Cho đường thẳng (d) xác định bởi \(\hept{\begin{cases}y=-1\\x+z=0\end{cases}}\)và hai mặt phẳng (P): \(x+2y+2z+3=0,\)(Q): \(x+2y+2z+7=0\).(Chọn đáp án đúng) Phương trình mặt cầu có tâm thuộc (d) và tiếp xúc với (P), (Q)...
Đọc tiếp

Câu 1: Cho đường thẳng (d) xác định bởi \(\hept{\begin{cases}y=-1\\x+z=0\end{cases}}\)và hai mặt phẳng (P): \(x+2y+2z+3=0,\)(Q): \(x+2y+2z+7=0\).

(Chọn đáp án đúng) Phương trình mặt cầu có tâm thuộc (d) và tiếp xúc với (P), (Q) là:

\(a)\left(x+3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

\(b)\left(x+3\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=\frac{4}{9}\)

\(c)\left(x-3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

\(d)\left(x-3\right)^2+\left(y-1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

Câu 2: Cho mặt cầu (S): \(x^2+y^2+z^2-2x+2y+1=0\)và điểm \(M\left(0;-1;0\right).\)

Phương trình mặt phẳng (P) tiếp xúc với (S) tại M là:

\(a)2x+y-z+1=0.\)                     \(b)x=0.\)            

\(c)-x+y+2z+1=0.\)              \(d)x+y+1=0\)

Câu 3: Trong khai triển \(f\left(x\right)=\frac{1}{256}\left(2x+3\right)^{10}\)thành đa thức, hệ số của x8 là:

\(a)103680.\)            \(b)405.\)             \(c)106380.\)            \(d)504.\)

Câu 4: Tổng các nghiệm của phương trình \(2^{x^2-3}.5^{x^2-3}=0,01.\left(10^{x-1}\right)^3\)là:

\(a)3.\)            \(b)5.\)            \(c)0.\)            \(d)2\sqrt{2}.\)

 

1
21 tháng 6 2019

Lần sau em đăng bài ở học 24 để mọi người giúp đỡ em nhé!

Link đây: Cộng đồng học tập online | Học trực tuyến

1. Gọi I là tâm của mặt cầu cần tìm

Vì I thuộc d

=> I( a; -1; -a)

Mặt cầu tiếp xúc với hai mặt phẳng (p), (Q). nên ta co:

d(I; (P))=d(I;(Q))

<=> \(\frac{\left|a+2\left(-1\right)+2\left(-a\right)+3\right|}{\sqrt{1^2+2^2+2^2}}=\frac{\left|a+2\left(-1\right)+2\left(-a\right)+7\right|}{\sqrt{1^2+2^2+2^2}}\)

\(\Leftrightarrow\frac{\left|-a+1\right|}{3}=\frac{\left|-a+5\right|}{3}\Leftrightarrow a=3\)

=> I(3; -1; -3) ; bán kinh : R=d(I; P)=2/3

=> Phương trình mặt cầu:

\(\left(x-3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

đáp án C.

2. Gọi I là tâm mặt cầu: I(1; -1; 0)

Ta có: Phương trình mặt phẳng (P) tiếp xúc vs mặt Cầu S tại M

=> IM vuông góc vs mặt phẳng (P)

=> \(\overrightarrow{n_p}=\overrightarrow{MI}=\left(1;0;0\right)\)

=> Phương trình mặt phẳng (P) có véc tơ pháp tuyến: \(\overrightarrow{n_p}\)và qua điểm M

1(x-0)+0(y+1)+0(z-0) =0<=> x=0

đáp án B

3.

 \(f\left(x\right)=\dfrac{1}{256}\left(2x+3\right)^{10}=\dfrac{1}{256} \sum \limits_{k=0} ^{10}C_{k}^{10}(2x)^k.3^{10-k}\)

Để có hệ số x^8 thì k=8 khi đó hệ số của x^8 là:

\(\dfrac{1}{256}C_{8}^{10}.2^8.3^{10-8}=405\)

đáp án D

4.

pt <=>  \(\left(2.5\right)^{x^2-3}=10^{-2}.10^{3x-3}\)

\(\Leftrightarrow10^{x^2-3}=10^{3x-5}\)

\(\Leftrightarrow x^2-3=3x-5\Leftrightarrow x^2-3x+5=0\)

=> theo định lí viet tổng các nghiệm bằng 3, tích các nghiệm bằng 5

Đáp án A

mk nhầm câu c là 25f(x)

câu d là 24f(x)

mk nhầm nũa câu hỏi là cái f(x+2)-f(x) là bỏ nha

1trong ko gian hệ tọa độ oxyz, cho 2 điểm M(3;-2;1),N(0;1;-1). tìm độ dài của đoạn thẳng MN 2 Bốn điểm A,B,C,D sau đây đồng phẳng. chọn đáp án sai A (1;1;-2), B(0;1;-1),C(3;-1;-2)D(-1;0-1) B A(0;0;5),B(1;1;10), C(1;0;7), D(-4;1;0) C A(1;1;-3),B(1;0;-2) C(5;1;1),D(1;1;5) D A(1;1;-1),b(3;6;0),c(3;0;-2),d(0;3;0) 3 Trong ko gian với hệ tọa độ oxyz, cho ba vecto \(\overline{a}\) (-1;4;-2) và \(\overline{b}\) (1;1;0) \(\overline{c}\) (1;1;1). trong các mệnh đề sau,...
Đọc tiếp

1trong ko gian hệ tọa độ oxyz, cho 2 điểm M(3;-2;1),N(0;1;-1). tìm độ dài của đoạn thẳng MN

2 Bốn điểm A,B,C,D sau đây đồng phẳng. chọn đáp án sai

A (1;1;-2), B(0;1;-1),C(3;-1;-2)D(-1;0-1)

B A(0;0;5),B(1;1;10), C(1;0;7), D(-4;1;0)

C A(1;1;-3),B(1;0;-2) C(5;1;1),D(1;1;5)

D A(1;1;-1),b(3;6;0),c(3;0;-2),d(0;3;0)

3 Trong ko gian với hệ tọa độ oxyz, cho ba vecto \(\overline{a}\) (-1;4;-2) và \(\overline{b}\) (1;1;0) \(\overline{c}\) (1;1;1). trong các mệnh đề sau, mệnh đề nào sai

A/\(\overline{a}\)/=\(\sqrt{2}\) B\(\overline{a}\perp\overline{b}\) C /\(\overline{c}\)/=\(\sqrt{3}\) D\(\overline{b}\perp\overline{c}\)

4 trong ko gian oxyz, cho hai vecto \(\overline{a}\) (2;4;-2) và \(\overline{b}\) (1;-2;3). tích vô hướng của hai vecto a và b là

5 trong ko gain với hệ tọa độ oxyz cho \(\overline{a}\) (1;-2;3) và \(\overline{b}\) (2;-1;-1 . khẳng định nào sau đây đúng

A[\(\overline{a,}\overline{b}\)]=(-5;-7;-3) B veto \(\overline{a}\) ko cùng phương với vecto \(\overline{b}\)

C vecto \(\overline{a}\) ko vuông góc với vecto \(\overline{b}\) D/\(\overline{a}\)/=\(\sqrt{14}\)

6 trong ko gian với hệ tọa độ oxyz, cho ba vecto \(\overline{a}\) (-1;1;0) và \(^{\overline{b}}\)(1;1;0), \(\overline{c}\)(1;1;1. trong các mệnh đề sau mệnh đề nào sai

A/\(\overline{a}\) /=\(\sqrt{2}\) B/\(\overline{c}\)/=\(\sqrt{3}\)

C \(\overline{a}\perp\overline{b}\) D\(\overline{c}\perp\overline{b}\)

7 trong ko gian với hệ trục oxyz , mặt cầu tâm I(1;-2;3) , bán kính R =2 có pt là

8 mặt cầu tâm I(2;2;-2) bán kính R tiếp xúc với mp (P):2x-3y-z+5=0. bán kính R là

9 trong ko gian với hệ tọa độ oxyz , mặt cầu (S), tâm I(1;2;-3) và đi qua A(1;0;4) có pt là

10 trong ko gian với hệ trục tọa độ oxyz, cho hai điểm A(-1;2;1), B(0;2;3). viết pt mặt cầu có đường kính AB

11 trong ko gian với hệ trục oxyz cho hai điểm M(6;2;-5),N(-4;0;7). viết pt mặt cầu đường kính MN

12 tro ko gian với hệ trục oxyz, cho điểm I(0;-3;0). viết pt mặt cầu tâm I và tiếp xúc với mp(oxz)

13 trong ko gian oxyz cho điểm M(1;1;-2) và mặt phẳng \(\alpha\) :x-y-2z=3 . viết pt mặt cầu S có tâm M tiếp xúc với mp \(\alpha\)

14 viết pt mặt cầu (S) có tâm I(-1;2;1) và tiếp xúc với mp (P):x-2y-2z-2=0

5
13 tháng 5 2020

câu 5 ấy chắc thầy tui buồn ngủ nên quánh lộn chữ sai thành đúng r

NV
13 tháng 5 2020

12.

\(R=d\left(I;Oxz\right)=\left|y_I\right|=3\)

Phương trình:

\(x^2+\left(y+3\right)^2+z^2=9\)

\(\Leftrightarrow x^2+y^2+z^2+6y=0\)

13.

\(R=d\left(M;\alpha\right)=\frac{\left|1-1+2.2-3\right|}{\sqrt{1^2+1^2+2^2}}=\frac{1}{\sqrt{6}}\)

Pt mặt cầu:

\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z+2\right)^2=\frac{1}{6}\)

14.

\(R=d\left(I;\left(P\right)\right)=\frac{\left|-1-4-2-2\right|}{\sqrt{1^2+2^2+2^2}}=3\)

Phương trình:

\(\left(x+1\right)^2+\left(y-2\right)^2+\left(z-1\right)^2=9\)

\(\Leftrightarrow x^2+y^2+z^2+2x-4y-2z-3=0\)

NV
6 tháng 5 2020

1.

\(\overrightarrow{AB}=\left(1;-3;-3\right);\overrightarrow{AC}=\left(-1;-1;-4\right)\)

\(\Rightarrow\left[\overrightarrow{AB};\overrightarrow{AC}\right]=\left(9;7;-4\right)\)

\(\Rightarrow S_{ABC}=\frac{1}{2}\left|\left[\overrightarrow{AB};\overrightarrow{AC}\right]\right|=\frac{1}{2}\sqrt{9^2+7^2+4^2}=\frac{\sqrt{146}}{2}\)

2.

Phương trình mặt phẳng (P) qua A và vuông góc d là:

\(3\left(x-4\right)+2\left(y+3\right)-1\left(z-2\right)=0\)

\(\Leftrightarrow3x+2y-z-4=0\)

Tọa độ H là nghiệm: \(\left\{{}\begin{matrix}\frac{x+2}{3}=\frac{y+2}{2}=\frac{z}{-1}\\3x+2y-z-4=0\end{matrix}\right.\) \(\Rightarrow H\left(1;0;-1\right)\)

3.

\(f\left(x\right)=6x^5-9x^6\)

\(\Rightarrow F\left(x\right)=\int\left(6x^5-9x^6\right)dx=x^6-\frac{9}{7}x^7+C\)

\(F\left(-1\right)=1\Leftrightarrow1+\frac{9}{7}+C=1\Rightarrow C=-\frac{9}{7}\)

\(\Rightarrow F\left(x\right)=-\frac{9}{7}x^7+x^6-\frac{9}{7}\)

6 tháng 5 2020

\"\"

\n
DD
12 tháng 7 2021

Xét tam giác \(PBC\)và tam giác \(PAB\)có: 

\(\frac{PB}{PA}=\frac{BC}{AB}=\frac{PC}{PB}=\sqrt{2}\)

suy ra \(\Delta PBC~\Delta PAB\left(c.c.c\right)\)

suy ra \(\widehat{PBC}=\widehat{PAB}\).

\(\widehat{APB}=180^o-\widehat{PAB}-\widehat{PBA}=180^o-\widehat{PBC}-\widehat{PBA}=180^o-\widehat{ABC}\)

\(=180^o-45^o-135^o\)

5 tháng 4 2016

C K O E H F B A D

Trên \(\Delta\) lấy điểm D sao cho à D, A nằm khác phía nhau so với B. Gọi E là giao điểm của các đường thẳng KA và OC; Gọi F là giao điểm của các đường thẳng KB và OD

Vì K là tâm đường tròn bàng tiếp góc O của tam giác OAB nên KE là phân giác của góc OAC. Mà OAC là tam giác cân tại A ( do OA = AC, theo gt) nên suy ra KE cũng là đường trung trục của OC. Do đó, E là trung điểm của OC và KC=KO

Xét tương tự đối với KF, ta cũng có F là trung điểm của OD và KD=KO

Suy ra tam giác CKD cân tại K. Do đó, hạ KH vuông góc với  \(\Delta\) , ta có H là trung điểm của CD. Như vậy :

+ A là giao của  \(\Delta\)  và đường trung trực \(d_1\) của đoạn OC (1)

+ B là giao của  \(\Delta\)  và đường trung trực \(d_2\) của đoạn OD, với D là điểm đối xứng của C qua H là hình chiếu vuông góc của K trên  \(\Delta\)  (2)

Vì \(C\in\Delta\) và có hoành độ \(x_0=\frac{24}{5}\) nên gọi \(y_0\) là tung độ của C, ta có :

\(2.\frac{24}{5}+3y_0-12=0\) suy ra \(y_0=-\frac{12}{5}\)

Từ đó, trung điểm E của OC có tọa độ là \(\left(\frac{12}{5};-\frac{6}{5}\right)\) và đường thẳng OC có phương trình \(x+2y=0\)

Suy ra phương trình của \(d_1\) là \(2x-y-6=0\)

Do đó, theo (1), tọa độ của A là nghiệm của hệ phương trình :

\(\begin{cases}4x+3y-12=0\\2x-y-6=0\end{cases}\)

Giải hệ ta có \(A=\left(3;0\right)\)

5 tháng 4 2016

Để tìm tọa độ đỉnh B ta làm như sau :

Gọi d là đường thẳng đi qua K(6;6) và vuông góc với \(\Delta\).

Ta có phương trình của d là : \(3x-4y+6=0\). Từ đây, do H là giao điểm của  \(\Delta\). và d nên tọa độ của H là nghiệm của hệ phương trình :

\(\begin{cases}4x+3y-12=0\\3x-4y+6=0\end{cases}\)

Giải hệ trên, ta được \(H=\left(\frac{6}{5};\frac{12}{5}\right)\) suy ta \(D=\left(-\frac{12}{5};\frac{26}{5}\right)\)

Do đó, trung điểm F của OD có tọa độ là \(\left(-\frac{6}{5};\frac{18}{5}\right)\) và đường thẳng OD có phương trình \(3x+y=0\)

Suy ra phương trình của \(d_2\) là \(x-3y+12=0\)

Do đó, theo (2), tọa độ B là nghiệm của hệ phương trình :

\(\begin{cases}4x+3y-12=0\\x-3y+12=0\end{cases}\)

Giải hệ trên ta được B=(0;4)

 

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Lời giải:

b/ $x^2-4x+20=0$

$\Leftrightarrow (x-2)^2+16=0\Leftrightarrow (x-2)^2=-16< 0$ (vô lý)

Do đó pt vô nghiệm.

c/ $2x^3-3x+1=0$

$\Leftrightarrow 2x^2(x-1)+2x(x-1)-(x-1)=0$

$\Leftrightarrow (x-1)(2x^2+2x-1)=0$

$\Rightarrow x-1=0$ hoặc $2x^2+2x-1=0$

$\Leftrightarrow x=1$ hoặc $x=\frac{-1\pm \sqrt{3}}{2}$