Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
2. Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến. Ví dụ: 2x3y2,...
3. Để cộng (hay trừ) ác đơn thức đồng dạng, ta cộng ( hay trừ ) các hệ số với nhau và giữ nguyên phần biến.
4. Khi đa thức P (x) có giá trị bằng 0 thì ta nói a là một nghiệm của đa thức đó.
Câu 1 mình không biết.
Câu 1:
2x^3y^2
3x^6y^3
4x^5y^9
6x^8y^3
7x^4y^8
Câu 2:
Hai đơnthức đồng dạng là hai đơn thức có hệ số khác không và cùng phần biến
VD:
2xyz^3 và 3xyz^3
Câu 3:
Để cộng trừ hai đơn thức đồng dạng ta giữ nguyên phần biến và cộng trừ phần hệ số
Câu 4:
Số a được gọi là nghiệm của đa thức khi
Nếu tại x=a đa thức p(x) có giá trị bằng không thì ta nói a là một nghiệm của đa thức p(x)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
\(P\left(x\right)=x-2x^2+3x^5+x^4+x\)
\(\Leftrightarrow P\left(x\right)=\left(x+x\right)-2x^2+x^4+3x^5\)
\(\Leftrightarrow P\left(x\right)=2x-2x^2+x^4+3x^5\)
\(Q\left(x\right)=3-2x-2x^2+x^4-3x^5-x^4+4x^2\)
\(\Leftrightarrow Q\left(x\right)=3-2x+\left(-2x^2+4x^2\right)+\left(x^4-x^4\right)-3x^5\)
\(\Leftrightarrow Q\left(x\right)=3-2x+2x^2-3x^5\)
b)
\(P\left(x\right)+Q\left(x\right)=\left(2x-2x^2+3x^5+x^4\right)+\left(3-2x+2x^2-3x^5\right)\)
\(=2x-2x^2+3x^5+x^4+3-2x+2x^2-3x^5\)
\(=\left(2x-2x\right)+\left(3x^5-3x^5\right)+\left(-2x^2+2x^2\right)+x^4+3\)
\(=x^4+3\)
\(P\left(x\right)-Q\left(x\right)=\left(2x-2x^2+3x^5+x^4\right)-\left(3-2x+2x^2-3x^5\right)\)
\(=2x-2x^2+3x^5+x^4-3+2x-2x^2+3x^5\)
\(=\left(2x+2x\right)+\left(-2x^2-2x^2\right)+\left(3x^5+3x^5\right)+x^4-3\)
\(=4x-4x^2+6x^5+x^4-3\)
\(=6x^5+x^4-4x^2+4x-3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Với x=1
\(P\left(x\right)=2+1-1=2\)
Với x=\(\frac{1}{4}\)
\(P\left(x\right)=\frac{1}{8}+\frac{1}{4}-1=-\frac{5}{8}\)
Thay ba số -1;1;2 vào
Các số trên k có số nào là nghiệm của dt P(x)
Hok tốt
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Thay \(x = 2\) vào đa thức \(P(x) = 3x - 4\) ta được: \(P(2) = 3.2 - 4 = 6 - 4 = 2\).
Thay \(x = \dfrac{4}{3}\) vào đa thức \(P(x) = 3x - 4\) ta được: \(P(\dfrac{4}{3}) = 3.\dfrac{4}{3} - 4 = 4 - 4 = 0\).
Vậy x = 2 không là nghiệm của đa thức \(P(x) = 3x - 4\); \(x = \dfrac{4}{3}\)là nghiệm của đa thức \(P(x) = 3x - 4\).
b)Thay \(y = 1\) vào đa thức \(Q(y) = {y^2} - 5y + 4\) ta được: \(Q(1) = {1^2} - 5.1 + 4 = 1 - 5 + 4 = 0\).
Thay \(y = 4\) vào đa thức \(Q(y) = {y^2} - 5y + 4\) ta được: \(Q(4) = {4^2} - 5.4 + 4 = 16 - 20 + 4 = 0\).
Vậy \(y = 1,y = 4\)là nghiệm của đa thức \(Q(y) = {y^2} - 5y + 4\).
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 :
\(A=x^2-2xy^2+y^4=\left(x-y^2\right)^2=-\left(y^2-x\right)^2\)
Mà \(B=-\left(y^2-x\right)^2\)
Nên ta có : đpcm
Bài 2
Đặt \(\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)
TH1 : x = -1
TH2 : x = 2
TH3 : x = 1/2
Bài 4 :
a, \(\left(2x+3\right)\left(5-x\right)=0\Leftrightarrow x=-\frac{3}{2};5\)
b, \(\left(x-\frac{1}{2}\right)\left(3x+1\right)\left(2-x\right)=0\Leftrightarrow x=\frac{1}{2};-\frac{1}{3};2\)
c, \(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;-2\)
d, \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=0;1\)
a) \(P(4) = {4^2} - 16 = 16 - 16 = 0\).
\(P( - 4) = {( - 4)^2} - 16 = 16 - 16 = 0\).
Vậy x = 4 và x = – 4 là nghiệm của đa thức \(P(x) = {x^2} - 16\). Phát biểu a) đúng.
b) \(Q( - 2) = - 2.{( - 2)^3} + 4 = - 2. (- 8) + 4 = 16 + 4 = 20 \ne 0\).
Vậy y = – 2 không là nghiệm của đa thức \(Q(y) = - 2{y^3} + 4\). Phát biểu b) sai.