Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Phương trình nào sau đây là phương trình bậc nhất 2 ẩn
A. 3x2 + 2y = -1
B. 3x = -1
C. 3x - 2y - z = 0
D. 1x+y=31x+y=3
2. Cặp số (1 ; -2) là nghiệm của phương trình nào sau đây
A. 2x - y = -3
B. x + 4y = 2
C. x - 2y = 5
D. x - 2y = 1
3. Hệ phương trình {x+2y=12x+5=−4y{x+2y=12x+5=−4ycó bao nhiêu nghiệm ?
A. Vô nghiệm
B. Một nghiệm duy nhất
C. Hai nghiệm
D. Vô số nghiệm
4. Hệ phương trình {2x−3y=54x+my=2{2x−3y=54x+my=2vô nghiệm khi
A. m = -6
B. m = 1
C. m = -1
D. m = 6
5. Cặp số nào sau đây là nghiệm của hệ phương trình {4x+5y=3x−3y=5{4x+5y=3x−3y=5
A. (2 ; 1)
B. (-2 ; -1)
C. (2 ; -1)
D. (3 : 1)
6. Cặp số nào sau đây là một nghiệm của phương trình 2x + 3y = 12
A. (0 ; 3)
B. (3 ; 0)
C. (-1 ; 10/3)
D. (1 ; 3/10)
KHông có đáp án đúng

Bài 1:
Thay, thử giá trị $(x,y)=(-2,3)$ vào các phương trình trong các đáp án, ta thấy chỉ phương trình $b$ thỏa mãn : $2.(-2)+3.3=5$ nên cặp số đã cho là nghiệm của PT (b)
Bài 2:
Để $(-2;1)$ là nghiệm của pt đã cho thì khi thay giá trị $x=-2;y=1$ vào pt thì phải thỏa mãn.
\(m.2-5.(-1)=3m-1\)
\(\Rightarrow 2m+5=3m-1\Rightarrow m=6\)
Bài 3:
Đặt pt bậc nhất 2 ẩn là $ax+y=c$
Vì PT trên có nghiệm \((0;-2); (2;-5)\) nên:
\(\left\{\begin{matrix} a.0+(-2)=c\\ a.2+(-5)=c\end{matrix}\right.\Rightarrow \left\{\begin{matrix} -2=c\\ 2a=c+5\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} c=-2\\ 2a=-2+5=3\rightarrow a=\frac{3}{2}\end{matrix}\right.\)
Do đó \(\frac{3}{2}x+y=-2\) \(\Leftrightarrow 3x+2y=-4\)
Vậy PT bậc nhất 2 ẩn có dạng $3x+2y=-4$
Câu 6:
Thay lần lượt các cặp số đã cho vào PT $3x-2y=13$ ta thấy cặp $(-1,-8); (3,-2)$ là 2 cặp thỏa mãn nên đây là 2 cặp nghiệm của phương trình.

Bài 3 \(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)
\(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)
\(\hept{\begin{cases}S+P=2+3\sqrt{2}\left(1\right)\\S^2-2P=6\left(2\right)\end{cases}}\)
Từ (1)\(\Rightarrow P=2+3\sqrt{2}-S\)Thế P vào (2) rồi giải tiếp nhé. Mình lười lắm ^.^

7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
8. \(x^2-5x+14-4\sqrt{x+1}=0\) (ĐK: x > = -1).
\(\Leftrightarrow\) \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)
Với mọi x thực ta luôn có: \(\left(\sqrt{x+1}-2\right)^2\ge0\) và \(\left(x-3\right)^2\ge0\)
Suy ra \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\) \(\Leftrightarrow\) x = 3 (Nhận)

7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

Ta có:
\(\Delta_1+\Delta_2+\Delta_3=a^2-4b+b^2-4c+c^2-4a=a^2+b^2+c^2-48\)
Dễ thấy:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=48\Rightarrow\Delta_1+\Delta_2+\Delta_3\ge0\)
Khi đó có ít nhất một phương trình có nghiệm
Xét phương trình 3x + 5y = −3
Xét cặp số (−2; 1) không phải nghiệm của phương trình vì 3(−2) + 5.1 = 1
Xét cặp số (0; 2) không phải nghiệm của phương trình vì 3.0 + 5.2 = 10
Xét cặp số (−1; 0) là nghiệm của phương trình vì 3.(−1) + 5.0 = −3
Xét cặp số (1,5 ; 3) không phải nghiệm của phương trình vì 3.1,5 + 5.3 = 19,5
Xét cặp số (4; −3) là nghiệm của phương trình vì 3.4 + 5.(−3) = −3
Vậy có 3 cặp số không phải nghiệm của phương trình đã cho
Đáp án: B