Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
buithianhtho, Vũ Minh Tuấn, Băng Băng 2k6, No choice teen, Akai Haruma, Nguyễn Thanh Hằng, Duy Khang,
@tth_new, @Nguyễn Việt Lâm, @Nguyễn Thị Ngọc Thơ, @Nguyễn Huy Thắng
Mn giúp e vs ạ! Cần gấp ạ!
Thanks nhiều lắm ạ!
![](https://rs.olm.vn/images/avt/0.png?1311)
giải tạm 1 bài z -,-
2) Cauchy-Schwarz dạng Engel :
\(A=\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}=\dfrac{6}{2}=3\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=2\)
Chúc bạn học tốt ~
4/ Ta có: \(6=a+b+c+ab+bc+ca\ge3\left(\sqrt[3]{\left(abc\right)^2}+\sqrt[3]{abc}\right)\)
Đặt \(\sqrt[3]{abc}=t\Rightarrow t^2+t\le2\Rightarrow t\le1\Rightarrow t^3=C=abc\le1\)
Vậy...
5/ \(D\le\left(\frac{a+b+c}{3}\right)^3.\left[\frac{2\left(a+b+c\right)}{3}\right]^3=\frac{512}{729}\)
Vậy ...
P/s: Em không chắc
![](https://rs.olm.vn/images/avt/0.png?1311)
B1 :
Áp dụng bđt cosi ta có : a^2/b+c + b+c/4 >= \(2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}\) = 2. a/2 = a
Tương tự b^2/c+a + c+a/4 >= b
c^2/a+b + a+b/4 >= c
=> VT + a+b+c/2 >= a+b+c
=> VT >= a+b+c/2 = VP
=> ĐPCM
Dấu "=" xảy ra <=> a=b=c > 0
k mk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 3/ \(\sqrt{\left(x+z\right)^2+\left(y-t\right)^2}+\sqrt{\left(x-z\right)^2+\left(y+t\right)^2}\)
\(\le\sqrt{1+2xz-2yt}+\sqrt{1-2xz+2yt}\)
\(\le\dfrac{1+1+2xz-2yt}{2}+\dfrac{1+1-2xz+2yt}{2}=1+1=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Từ giả thiết ta có:
\(\left(x+y\right)^2=4\)
\(\Leftrightarrow x^2+y^2+2xy=4\)
\(\Leftrightarrow x^2+y^2=4-2xy\ge4-2.\frac{\left(x+y\right)^2}{4}=4-2.\frac{4}{4}=2\)
\(\Rightarrow Min=2\Leftrightarrow x=y=1\)
b. Từ giả thiết suy ra:
\(3\ge\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow ab+bc+ca\le1\)
\(\Rightarrow T=\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\)
\(\le\frac{a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+ab+bc+ca}}+\frac{c}{\sqrt{c^2+ab+bc+ca}}\)
\(=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{a}{\sqrt{\left(c+b\right)\left(a+b\right)}}+\frac{a}{\sqrt{\left(c+b\right)\left(a+c\right)}}\)
\(=\sqrt{\frac{a}{a+b}.\frac{a}{a+c}}+\sqrt{\frac{b}{c+b}.\frac{b}{a+b}}+\sqrt{\frac{a}{b+c}.\frac{a}{a+c}}\)
\(\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{c+b}+\frac{b}{a+b}+\frac{a}{b+c}+\frac{a}{a+c}\right)\)
\(=\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{1}{2}\left(1+1+1\right)=\frac{3}{2}\)
\(Max_T=\frac{3}{2}\Leftrightarrow a=b=c=\frac{\sqrt{3}}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
3 g) \(xyz=x+y+z+2\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)=\Sigma_{cyc}\left(x+1\right)\left(y+1\right)\)
\(\Rightarrow\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\) .Đặt \(\frac{1}{x+1}=a;\frac{1}{y+1}=b;\frac{1}{z+1}=c\Rightarrow x=\frac{1-a}{a}=\frac{b+c}{a};y=\frac{c+a}{b};z=\frac{a+b}{c}\) vì a + b + c = 1.
Khi đó \(P=\Sigma_{cyc}\frac{1}{\sqrt{\frac{\left(b+c\right)^2}{a^2}+2}}=\Sigma_{cyc}\frac{a}{\sqrt{2a^2+\left(b+c\right)^2}}\)
\(=\sqrt{\frac{2}{9}+\frac{4}{9}}.\Sigma_{cyc}\frac{a}{\sqrt{\left[\left(\sqrt{\frac{2}{9}}\right)^2+\left(\sqrt{\frac{4}{9}}\right)^2\right]\left[2a^2+\left(b+c\right)^2\right]}}\)
\(\le\sqrt{\frac{2}{3}}\Sigma_{cyc}\frac{a}{\sqrt{\left[\frac{2}{3}a+\frac{2}{3}b+\frac{2}{3}c\right]^2}}=\frac{\sqrt{6}}{2}\left(a+b+c\right)=\frac{\sqrt{6}}{2}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=2\)
3c) Nhìn quen quen, chả biết có lời giải ở đâu hay chưa nhưng vẫn làm:D (Em ko quan tâm nha!)
\(P=3-\Sigma_{cyc}\frac{2xy^2}{xy^2+xy^2+1}\ge3-\Sigma_{cyc}\frac{2xy^2}{3\sqrt[3]{\left(xy^2\right)^2}}=3-\frac{2}{3}\Sigma_{cyc}\sqrt[3]{\left(xy^2\right)}\)
\(\ge3-\frac{2}{3}\Sigma_{cyc}\frac{x+y+y}{3}=3-\frac{2}{3}\left(x+y+z\right)=3-2=1\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a+\sqrt{1-a^2}=b+\sqrt{1-b^2}\)
\(\Rightarrow a\sqrt{1-a^2}=b\sqrt{1-b^2}\)
\(\Rightarrow a^2\left(1-a^2\right)=b^2\left(1-b^2\right)\)
\(\Rightarrow a^2-a^4=b^2-b^4\)
\(\Rightarrow a^2-b^2-\left(a^2-b^2\right)\left(a^2+b^2\right)=0\)
\(\Rightarrow\left(a^2-b^2\right)\left(a^2+b^2-1\right)=0\)
\(\Rightarrow a^2+b^2=1\)
- Với \(y=0\Rightarrow x=1\) là 1 nghiệm của pt
- Với \(y>0\Rightarrow2016^y\) luôn chẵn
\(VT=1+x\left(x^3+x^2+x+1\right)=1+x\left(x+1\right)\left(x^2+1\right)\)
Do \(x\left(x+1\right)\) là tích 2 STN liên tiếp nên luôn chẵn
\(\Rightarrow VT\) luôn lẻ \(\Rightarrow\) pt vô nghiệm
Vậy pt có cặp nghiệm duy nhất \(\left(x;y\right)=\left(0;0\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
2.
\(xy+yz+zx=\frac{\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)}{2}=-\frac{1}{2}\)
\(\Rightarrow yz=-\frac{1}{2}-x\left(y+z\right)=-\frac{1}{2}-x\left(-x\right)=x^2-\frac{1}{2}\)
Ta có:
\(x+y=-z\Leftrightarrow\left(x+y\right)^5=-z^5\)
\(\Leftrightarrow x^5+y^5+z^5=-5x^4y-10x^3y^2-10x^2y^3-5xy^4\)
\(\Leftrightarrow x^5+y^5+z^5=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)
\(\Leftrightarrow P=-5xy\left[\left(x+y\right)^3-xy\left(x+y\right)\right]\)
\(\Leftrightarrow P=-5xy\left[-z^3+xyz\right]=5xyz\left(z^2-xy\right)\)
\(\Leftrightarrow P=\frac{5}{2}xyz\left(z^2+\left(x+y\right)^2-2xy\right)=\frac{5}{2}xyz\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow P=\frac{5}{2}xyz=\frac{5}{2}x\left(x^2-\frac{1}{2}\right)\)
\(\Rightarrow P^2=\frac{25}{4}x^2\left(\frac{1}{2}-x^2\right)^2=\frac{25}{8}.2x^2\left(\frac{1}{2}-x^2\right)\left(\frac{1}{2}-x^2\right)\)
\(\Rightarrow P^2\le\frac{25}{8}\left(\frac{2x^2+\frac{1}{2}-x^2+\frac{1}{2}-x^2}{3}\right)^3=\frac{25}{216}\)
\(\Rightarrow P\le\frac{5\sqrt{6}}{36}\)
\(P_{max}=\frac{5\sqrt{6}}{36}\) khi \(x=-\frac{1}{\sqrt{6}}\)
3.
Xét \(Q=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
\(Q^2=\frac{a^4}{b^2}+\frac{2a^2b}{c}+c^2+\frac{b^4}{c^2}+\frac{2b^2c}{a}+a^2+\frac{c^4}{a^2}+\frac{2c^2a}{b}+b^2-\left(a^2+b^2+c^2\right)\)
\(\Rightarrow Q^2\ge4\sqrt[4]{\frac{a^4.a^2b.a^2b.c^2}{b^2c^2}}+4\sqrt[4]{\frac{b^4.b^2c.c^2c.a^2}{c^2a^2}}+4\sqrt[4]{\frac{c^4.c^2a.c^2a.b^2}{a^2b^2}}-\left(a^2+b^2+c^2\right)\)
\(\Rightarrow Q^2\ge3\left(a^2+b^2+c^2\right)\Rightarrow Q\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)
Đặt \(x=a^2+b^2+c^2\ge\frac{1}{3}\)
\(\Rightarrow P\ge2020\sqrt{3x}+\frac{1}{3x}=\sqrt{3x}+\sqrt{3x}+\frac{1}{3x}+2018\sqrt{3x}\)
\(\Rightarrow P\ge3\sqrt[3]{\frac{3x}{3x}}+2018.\sqrt{3.\frac{1}{3}}=2021\)
\(P_{min}=2021\) khi \(a=b=c=\frac{1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Áp dụng BĐT AM-GM:
\(9=x+y+xy+1=(x+1)(y+1)\leq \left(\frac{x+y+2}{2}\right)^2\)
\(\Rightarrow 4\leq x+y\)
Tiếp tục áp dụng BĐT AM-GM:
\(x^3+4x\geq 4x^2; y^3+4y\geq 4y^2\)
\(\frac{x}{4}+\frac{1}{x}\geq 1; \frac{y}{4}+\frac{1}{y}\geq 1\)
\(\Rightarrow x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 5(x^2+y^2)+\frac{3}{4}(x+y)+2\)
Mà:
\(5(x^2+y^2)\geq 5.\frac{(x+y)^2}{2}\geq 5.\frac{4^2}{2}=40\)
\(\frac{3}{4}(x+y)\geq \frac{3}{4}.4=3\)
\(\Rightarrow A= x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 40+3+2=45\)
Vậy \(A_{\min}=45\Leftrightarrow x=y=2\)
Bài 2:
\(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
\(B-24=\frac{a^2}{a-1}-4+\frac{2b^2}{b-1}-8+\frac{3c^2}{c-1}-12\)
\(=\frac{a^2-4a+4}{a-1}+\frac{2(b^2-4b+4)}{b-1}+\frac{3(c^2-4c+4)}{c-1}\)
\(=\frac{(a-2)^2}{a-1}+\frac{2(b-2)^2}{b-1}+\frac{3(c-2)^2}{c-1}\geq 0, \forall a,b,c>1\)
\(\Rightarrow B\geq 24\)
Vậy \(B_{\min}=24\Leftrightarrow a=b=c=2\)
Đáp án C