Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số học sinh dự tuyển của trường AA là xx (học sinh) (x∈N∗;x<560x∈N∗;x<560)
Số học sinh dự tuyển của trường BB là yy (học sinh) (y∈N∗;y<560y∈N∗;y<560)
Vì tổng số học sinh dự thi của hai trường là 750 học sinh nên ta có phương trình: x+y=750x+y=750 (1)
Số học sinh trúng tuyển của trường AA là: 80%.x=45x80%.x=45x (học sinh)
Số học sinh trúng tuyển của trường BB là: 70%.y=710y70%.y=710y (học sinh)
Vì tổng số học sinh trúng tuyển của cả hai trường là 560560 học sinh nên ta có phương trình
45x+710y=56045x+710y=560
⇔8x+7y=5600⇔8x+7y=5600 (2)
Từ (1) và (2) ta có hệ phương trình
{x+y=7508x+7y=5600{x+y=7508x+7y=5600
⇔{7x+7y=52508x+7y=5600⇔{7x+7y=52508x+7y=5600
⇔{y=400(tm)x=350(tm)⇔{y=400(tm)x=350(tm)
Vậy số học sinh dự thi của trường AA là 350350 học sinh
Số học sinh dự thi của trường BB là 400400 học sinh.
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Gọi x(km/h) là vận tốc của xe 1 ( x > 10 )
Vận tốc của xe 2 = x - 10 (km/h)
Thời gian xe 1 đi hết quãng đường AB = 160/x (km)
Thời gian xe 2 đi hết quãng đường AB = 160/(x-10) (km)
Khi đó xe 1 đến B sớm hơn xe 2 là 48 phút = 4/5 giờ nên ta có phương trình :
\(\frac{160}{x-10}-\frac{160}{x}=\frac{4}{5}\)
<=> \(\frac{160x}{x\left(x-10\right)}-\frac{160\left(x-10\right)}{x\left(x-10\right)}=\frac{4}{5}\)
=> 4x( x - 10 ) = 8000
<=> x2 - 10x - 2000 = 0 (*)
Xét (*) có Δ = b2 - 4ac = (-10)2 - 4.1.(-2000) = 100 + 8000 = 8100
Δ > 0 nên (*) có hai nghiệm phân biệt :
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\text{Δ}}}{2a}=\frac{10+\sqrt{8100}}{2}=50\left(tm\right)\\x_2=\frac{-b-\sqrt{\text{Δ}}}{2a}=\frac{10-\sqrt{8100}}{2}=-40\left(ktm\right)\end{cases}}\)
Vậy vận tốc của xe 2 là 40km/h
gọi vận tốc của xe thứ hai là x (km/h)
⇒t/g xe thứ hai đi là \(\dfrac{160}{x}\)(h)
vận tốc của xe thứ nhất là x+10 (km/h) (x>0)
⇒t/g của xe thứ nhất đi là \(\dfrac{160}{x+10}\left(h\right)\)
vì xe thứ nhất đến sớm hơn xe thứ hai là 48'=\(\dfrac{4}{5}h\) nên ta có pt:
\(\dfrac{160}{x}-\dfrac{160}{x+10}=\dfrac{4}{5}\)
⇔\(\dfrac{800x+8000-800x}{5x\left(x+10\right)}=\dfrac{4x^2+40x}{5x\left(x+10\right)}\)⇒4x\(^2\)+40x-8000=0
Δ=40\(^2\)-4.4.(-8000)=129600>0
⇒pt có hai nghiệm pb
x\(_{_{ }1}\)=\(\dfrac{-40+\sqrt{129600}}{8}\)=40 (TM)
x\(_2\)=\(\dfrac{-40-\sqrt{129600}}{8}\)=-50 (KTM)
vậy vận tốc của xe thứ hai là 40 km/h
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi x(học sinh) là số học sinh dự thi của trường THCS A (\(0< x< 400,x\in Z\))
Số học sinh dự thi của trường THCS B là 400-x(học sinh)
Số học sinh trúng truyển của trường A là: \(\frac{3x}{5}\)(học sinh)
Sô học sinh trúng tuyển của trường B là: \(\frac{4x}{5}\)
Ta có tổng số học sinh trúng tuyển bằng 70% số học sinh dự thi của 2 trường nên ta có phương trình \(\frac{3x}{5}+\frac{4x}{5}=70\%.400\Leftrightarrow\frac{7x}{5}=280\Leftrightarrow x=200\)(tm)
Vậy số học sinh dự thi của trường A là 200 học sinh
số học sinh dự thi của trường B là 200 học sinh
![](https://rs.olm.vn/images/avt/0.png?1311)
Tổng số thí sinh tham gia thi:
80 × 24 = 1920 (thí sinh)
Tổng số phần bằng nhau:
2 + 3 = 5 (phần)
Số thí sinh vào trường Nguyễn Viết Xuân:
1920 : 5 × 2 = 768 (thí sinh)
Số thí sinh vào trường Lê Xoay:
1920 - 768 = 1152 (thí sinh)
![](https://rs.olm.vn/images/avt/0.png?1311)
Trường A: 320(h/s), trường B: 540(h/s)
Giải thích các bước giải:
Gọi số học sinh của 2 trường lần lượt là x;y(h/s)(x;y>0)x;y(h/s)(x;y>0)
Số học sinh thi đỗ của 2 trường là 86% nên số học sinh đỗ của 2 trường là 860 (học sinh)
Theo giả thiết ta có hệ phương trình:
{x+y=100080%x+90%y=860⇔{x+y=100045x+910y=860⇔{x+y=1000x+98y=1075⇒(x+98y)−(x+y)=1075−1000⇔18y=75⇔y=600⇒x=400{x+y=100080%x+90%y=860⇔{x+y=100045x+910y=860⇔{x+y=1000x+98y=1075⇒(x+98y)−(x+y)=1075−1000⇔18y=75⇔y=600⇒x=400
Suy ra số học sinh thi đỗ của trường A là 400.80%=320(h/s)400.80%=320(h/s)
Số học sinh thi đỗ của trường B là 600.90%=540(h/s)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số học sinh của trường thứ nhất dự thi là x (học sinh) (x ∈ ℕ * , x < 300)
Số học sinh của trường thứ 2 dự thi là y (học sinh) (y ∈ ℕ * , y < 300)
Hai trường có tất cả 300 học sinh tham gia một cuộc thi nên ta có phương trình:
x + y = 300 (1)
Trường A có 75% học sinh đạt, trường 2 có 60% đạt nên cả 2 trường có 207 học sinh đạt nên ta có:
75 100 x + 60 100 y = 207 (2)
Từ (1) và (2) ta có hệ phương trình:
x + y = 300 75 100 x + 60 100 y = 207 ⇔ 60 100 x + 60 100 y = 180 75 100 x + 60 100 y = 207 ⇔ 15 100 = 27 x + y = 300 ⇔ x = 180 y = 120 ( t m d k )
Vậy số học sinh của trường thứ nhất dự thi là 180 học sinh; Số học sinh của trường thứ 2 dự thi là 120 học sinh.
Đáp án: B
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số học sinh của trường thứ nhất dự thi là x (học sinh) (x ∈ ℕ * , x < 300)
Số học sinh của trường thứ hai dự thi là y (học sinh) (y ∈ ℕ * , y < 300)
Hai trường có tất cả 300 học sinh tham gia cuộc thi nên ta có phương trình:
x + y = 300 (1)
Trường A có 75% học sinh đạt, trường 2 có 60% đạt nên cả 2 trường có 207 học sinh đạt, ta có 75 100 x + 60 100 y = 207 (2)
Từ (1) và (2) ta có hệ phương trình:
x + y = 300 75 100 x + 60 100 y = 207 ⇔ 60 100 x + 60 100 y = 180 75 100 x + 60 100 y = 207 ⇔ 15 100 x = 27 x + y = 300 ⇔ x = 180 y = 120 ( t h ỏ a m ã n )
Vậy số học sinh của trường thứ nhất dự thi là 180 học sinh; Số học sinh của trường thứ hai dự thi là 120 học sinh.
Đáp án: C
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi x,yx,y lần lượt là số học sinh dự thi của THCS A và B
Đk: 250>x,y>0250>x,y>0
Dựa vào đề bài, ta có hpt:
{x+y=25023x−35y=2{x+y=25023x−35y=2
{x=120y=130{x=120y=130
Vậy số học sinh dự thi THCS A là 120120 học sinh
số học sinh dự thi THCS B là 130130 học sinh
Hok tốt ^^