Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lời giải:
PT hoành độ giao điểm:
\(y=\frac{1-3x}{4}=-\left(\frac{x}{3}+1\right)\)
\(\Leftrightarrow 3(1-3x)=-4(x+3)\)
\(\Leftrightarrow x=3\)
\(\Rightarrow y=\frac{1-3x}{4}=\frac{1-3.3}{4}=-2\)
Vậy tọa độ giao điểm của 2 đường thẳng này là $(3;-2)$

a) Hoành độ giao điểm của hai hàm số y = 3x-2 và y = 2x+3 là :
\(3x-2=2x+3\\ \Leftrightarrow x=5\)
Thay x=5 vào một trong hai hàm số ta được tung độ giao điểm của hai hàm số đã cho là y=13
Vậy toạ độ giao điểm của hai hàm số đã cho là (x;y)=(5;13)
b) Hoành độ giao điểm của hai hàm số y=\(\frac{1}{2}x-\frac{3}{2}\)và hàm số y=\(-\frac{1}{3}x+\frac{5}{3}\) là :
\(\frac{1}{2}x-\frac{3}{2}=-\frac{1}{3}x+\frac{5}{3}\\ \Leftrightarrow\frac{5}{6}x=\frac{19}{6}\\ \Leftrightarrow x=\frac{19}{5}\)
Thay \(x=\frac{19}{5}\)vào một trong hai hàm số đã cho ta có : \(y=\frac{2}{5}\)
Vậy toạ độ giao điểm của hai hàm số đã cho là \(\left(x;y\right)=\left(\frac{19}{5};\frac{2}{5}\right)\)

ĐKXĐ:
a/ \(x+5\ne0\Rightarrow x\ne-5\)
b/ \(\left\{{}\begin{matrix}x-1\ge0\\4-x\ge0\\x-2\ne0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}1\le x\le4\\x\ne2\\x\ne3\end{matrix}\right.\)
c/ \(\left\{{}\begin{matrix}x-2\ne0\\x+4\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne2\\x\ne-4\end{matrix}\right.\)
d/ \(\left\{{}\begin{matrix}2-x\ge0\\x^2-5x+6\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\le2\\x\ne2\\x\ne3\end{matrix}\right.\) \(\Rightarrow x< 2\)
Pt hoành độ giao điểm:
\(\frac{1-3x}{4}=-\left(\frac{x}{3}+1\right)\)
\(\Rightarrow x=3\)
Thay vào 1 trong 2 pt đường thẳng ta được \(y=-2\)
Vậy tọa độ giao điểm là \(\left(3;-2\right)\)