Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)\(\frac{11^4.6-11^5}{11^4-11^5}:\frac{9^8.3-9^9}{9^8.5+9^8.7}\)
\(=1.6:\frac{9^8.3-9^8.9}{9^8.\left(5+7\right)}\)
\(=6:\frac{9^8.\left(3-9\right)}{9^8.12}\)
\(=6:\frac{9^8.\left(-6\right)}{9^8.12}\)
\(=6:\left(-\frac{6}{12}\right)\)
\(=6:\left(-\frac{1}{2}\right)\)
\(=-12\)
b) 3/5 : ( -1/5-1/6)+3/5:(-1/3-16/15) ( mình chuyển về ps luôn )
=3/5: (-11/30) + 3/5 : (-7/5)
=3/5:[-11/30+(-7/5)]
=3/5:53/30
=18/53
c) (1/2-13/14):5/7-(-2/21+1/7):5/7
= -3/7:5/7-1/21:5/7
=(-3/7-1/21):5/7
=-10/21:5/7
=-2/3
câu b vá c mình làm tắt nha. chúc bạn học tốt

A= (-4/5+4/3)+(-5/4+14/5)-7/3
= 8/15+31/20-7/3
= 25/12-7/3
= -1/4
B= 8/3.2/5.3/8.10.19/92
= 16/15.3/8.10.19/92
= 2/5.10.19/92
= 4.19/92
= 19/23
C= \(\frac{-5}{7}\).\(\frac{2}{11}\)+\(\frac{-5}{7}\).\(\frac{9}{14}\)+1\(\frac{5}{7}\)
=\(\frac{-5}{7}\).\(\frac{2}{11}\)+\(\frac{-5}{7}\).\(\frac{9}{14}\)+\(\frac{12}{7}\)
= \(\frac{-10}{77}\)+\(\frac{-5}{7}\).\(\frac{9}{14}\)+\(\frac{12}{7}\)
= \(\frac{-10}{77}\)+\(\frac{-45}{98}\)+\(\frac{12}{7}\)
= \(\frac{-635}{1078}\)+\(\frac{12}{7}\)
= \(\frac{1213}{1078}\)

\(A=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{99}{5^{100}}\)
<=> \(5A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{99}{5^{99}}\)
=> \(5A-A=\left(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{99}{5^{99}}\right)-\left(\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^5}+...+\frac{99}{5^{100}}\right)\)
=> \(4A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{99}}-\frac{99}{5^{100}}\)
=> \(20A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}-\frac{99}{5^{99}}\)
=> \(20A-4A=\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}-\frac{99}{5^{99}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{99}}-\frac{99}{5^{100}}\right)\)
=> \(16A=1+\frac{99}{5^{100}}-\frac{100}{5^{99}}< 1\)
=> \(A< \frac{1}{16}< \frac{1}{6}\)

\(a,\frac{-7}{25}.\frac{11}{13}+\frac{-7}{25}.\frac{2}{13}-\frac{18}{25}\)
\(=\frac{-7}{25}.\left(\frac{11}{13}+\frac{2}{13}\right)-\frac{18}{25}=\frac{-7}{25}-\frac{18}{25}=-1\)
\(b,\frac{5}{7}.\frac{1}{3}-\frac{5}{7}.\frac{1}{4}-\frac{5}{7}.\frac{1}{12}=\frac{5}{7}.\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)=\frac{5}{7}.\left(\frac{4}{12}-\frac{3}{12}-\frac{1}{12}\right)\)
\(=\frac{5}{7}.0=0\)
c)\(5\frac{2}{5}.4\frac{2}{7}+5\frac{5}{7}.5\frac{2}{5}=\frac{27}{5}.\frac{30}{7}+\frac{40}{7}.\frac{27}{5}=\frac{27}{5}.\left(\frac{30}{7}+\frac{40}{7}\right)\)
\(=\frac{27}{5}.10=27.2=54\)
\(d,75\%-1\frac{1}{2}+0,5:\frac{5}{12}-\left(\frac{-1}{2}\right)^2=\frac{3}{4}-\frac{3}{2}+\frac{1}{2}.\frac{12}{5}-\frac{1}{4}\)
\(=\left(\frac{3}{4}-\frac{1}{4}\right)-\frac{3}{2}+\frac{6}{5}=\frac{1}{2}-\frac{3}{2}+\frac{6}{5}=-1+\frac{6}{5}=\frac{-5}{5}+\frac{6}{5}=\frac{1}{5}\)

13/50+9/100+41/100+12/50
=(13/50+12/50)+(9/100+41/100)
=1/2+1/2
=1
11) Ta có:
\(\frac{120-0,5.40.5.0,2.20.0,25-20}{1+5+9+...+33+37}\)
\(=\frac{120-\left(0,5.40\right).\left(5.0,2\right).\left(20.0,25\right)-20}{1+5+9+...+33+37}\)
\(=\frac{120-20.1.5-20}{1+5+9+...+33+37}\)
\(=\frac{120-100-20}{1+5+9+...+33+37}\)
\(=\frac{0}{1+5+9+...+33+37}=0\)

a: \(\Leftrightarrow2^x=1024\cdot3+1024\cdot7776+7776\cdot5\)
\(\Leftrightarrow2^x=8004576\)
hay \(x\in\varnothing\)
b: \(\Leftrightarrow x\left(x+3\right)^{100}-\left(x+3\right)^{100}=0\)
\(\Leftrightarrow\left(x+3\right)^{100}\left(x-1\right)=0\)
=>x=-3 hoặc x=1

Bài 1: Tìm \( x \)
\[
x - \frac{25\%}{100}x = \frac{1}{2}
\]
Để giải phương trình này, trước hết chúng ta phải chuyển đổi phần trăm thành dạng thập phân:
\[
\frac{25\%}{100} = 0.25
\]
Phương trình ban đầu trở thành:
\[
x - 0.25x = \frac{1}{2}
\]
Tổng hợp các hạng tử giống nhau:
\[
1x - 0.25x = \frac{1}{2}
\]
\[
0.75x = \frac{1}{2}
\]
Giải phương trình ta được:
\[
x = \frac{\frac{1}{2}}{0.75} = \frac{2}{3}
\]
Vậy, \( x = \frac{2}{3} \)
Bài 2: Tính hợp lý
a) \[
\frac{5}{-4} + \frac{3}{4} + \frac{4}{-5} + \frac{14}{5} - \frac{7}{3}
\]
Chúng ta cần tìm một mẫu số chung cho tất cả các phân số. Mẫu số chung nhỏ nhất là 60.
\[
= \frac{75}{-60} + \frac{45}{60} + \frac{-48}{60} + \frac{168}{60} - \frac{140}{60}
\]
\[
= \frac{75 + 45 - 48 + 168 - 140}{60}
\]
\[
= \frac{100}{60} = \frac{5}{3}
\]
b) \[
\frac{8}{3} \times \frac{2}{5} \times \frac{3}{10} \times \frac{10}{92} \times \frac{19}{92}
\]
Tích của các phân số là:
\[
= \frac{8 \times 2 \times 3 \times 10 \times 19}{3 \times 5 \times 10 \times 92 \times 92}
\]
\[
= \frac{9120}{4131600} = \frac{57}{25825}
\]
c) \[
\frac{5}{7} \times \frac{2}{11} + \frac{5}{7} \times \frac{9}{14} + \frac{1}{5}
\]
Tích của các phân số là:
\[
= \frac{10}{77} + \frac{45}{98} + \frac{1}{5}
\]
\[
= \frac{980}{7546} + \frac{3485}{7546} + \frac{15092}{75460}
\]
\[
= \frac{2507}{7546}
\]
tử số của phép tính này không có quy luật nào cả. bạn có thể viết lại đề được ko?