
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(2A=2^1+2^2+...+2^{2011}\)
\(2A-A=2^{2011}-1\)
\(A=2^{2011}-1\)
A = 20 + 21 + ... + 22010
2A = 21 + 22 + ... 22011
2A - A = (21 + 22 + ... 22011) - (20 + 21 + ... + 22010)
A = 22011 - 1

a)
\(S=1-2+3-4+...+2009-2010\)
\(S=\left(1-2\right)+\left(3-4\right)+...+\left(2009-2010\right)\)
\(S=\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)
Có:
\(\dfrac{\left(2010-1\right):1+1}{2}=1005\) số (-1)
\(\Rightarrow S=1005.\left(-1\right)=-1005\)
b)
\(P=0-2+4-6+...+2010-2012\)
\(P=\left(0-2\right)+\left(4-6\right)+...+\left(2010-2012\right)\)
\(P=\left(-2\right)+\left(-2\right)+...+\left(-2\right)\)
Có:
\(\dfrac{\left(2010-0\right):2+1}{2}=503\) số (-2)
\(\Rightarrow P=503.\left(-2\right)=-1006\)
a)
S=1−2+3−4+...+2009−2010S=1−2+3−4+...+2009−2010
S=(1−2)+(3−4)+...+(2009−2010)S=(1−2)+(3−4)+...+(2009−2010)
S=(−1)+(−1)+...+(−1)S=(−1)+(−1)+...+(−1)
Có:
(2010−1):1+12=1005(2010−1):1+12=1005 số (-1)
⇒S=1005.(−1)=−1005⇒S=1005.(−1)=−1005
b)
P=0−2+4−6+...+2010−2012P=0−2+4−6+...+2010−2012
P=(0−2)+(4−6)+...+(2010−2012)P=(0−2)+(4−6)+...+(2010−2012)
P=(−2)+(−2)+...+(−2)P=(−2)+(−2)+...+(−2)
Có:
(2010−0):2+12=503(2010−0):2+12=503 số (-2)
⇒P=503.(−2)=−1006

a, \(2A=2+2^2+2^3+...+2^{2011}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2011}\right)-\left(2^0+2^1+2^2+...+2^{2010}\right)\)
\(A=2^{2011}-1\)
b, \(4C=4^2+4^3+...+4^{n+1}\)
\(4C-C=\left(4^2+4^3+...+4^{n+1}\right)-\left(4+4^2+...+4^n\right)\)
\(3C=4^{n+1}-4\)
\(C=\frac{4^{n+1}-4}{3}\)
a) A = 1 + 2 + 22 + ... + 22010
=> 2A = 2 + 22 + 23 + ... + 22011
Lấy 2A - A = (2 + 22 + 23 + ... + 22011) - (1 + 2 + 22 + ... + 22010)
A = 2 + 22 + 23 + ... + 22011 - 1 - 2 - 22 - ... - 22010
= 22011 - 1
b) C = 4 + 42 + 43 +... + 4n
=> 4C = 42 + 43 + 44 + ... + 4n + 1
Lấy 4C - C = (42 + 43 + 44 + ... + 4n + 1) - ( 4 + 42 + 43 +... + 4n)
3C = 4n + 1 - 4
C =(4n + 1 - 4) : 3

a,Ta có :2A=2+2^2+2^3+...+2^2011
2A-A=2^2011-2^0=2^2011-1
b,Tính 4B làm tương tự A
a)2A=2(1+2.2+2.22+...+2.22010)
=2.1+2.2+2.22+...+2.22010
=2+22+23+...+22011
2A-A=(2+22+23+...+22011)-(1+2+22+...+22010)
A=22010-1

Lời giải:
\(A=2^0+2^1+2^2+....+2^{2010}\)
\(\Rightarrow 2A=2^1+2^2+2^3+...+2^{2011}\)
\(\Rightarrow 2A-Â=(2^1+2^2+2^3+...+2^{2011})-(2^0+2^1+2^2...+2^{2010})\)
\(\Leftrightarrow A=2^{2011}-2^0=2^{2011}-1\)

a) 20+ 21+22+...+22010
A= 20+ 21+22+...+22010
2A= 2( 20+ 21+22+...+22010)
2A= 21+22+...+22010+22011
2A-A= (21+22+...+22010+22011) -(20+ 21+22+...+22010)
A= 22011-20
A= 22011-1
Vì 22011 > 22010 nên 22011 -1 > 22010-1
Vậy..
c)1030 = ( 103 )10 = 100010
= ( 210 )10 = 102410
Vì 1024 > 1000
=> 100010 < 102410 hay 1030 < 2100

Ta có : \(A=2^0+2^1+2^2+2^3+...+2^{2010}\)
\(3A=2+2^2+2^3+2^4+...+2^{2011}\)
=> \(2A=3A-A=\left(2^1+2^2+...+2^{2011}\right)-\left(2^0+2^1+...+2^{2010}\right)\)
=>\(2A=2^{2011}-1\)
=>\(A=\frac{2^{2011}-1}{2}\)
=> A < B ( vì \(\frac{2^{2011}-1}{2}< 2^{2011}\) )
\(2A=2+2^2+2^3+...+2^{2011}\)
\(A=2^0+2^1+2^2+...+2^{2010}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2011}\right)-\left(2^0+2^1+2^2+...+2^{2010}\right)\)
\(\Rightarrow A=2^{2011}-1\)
Tính tổng:
$A=2^0+2^1+2^2+...+2^{2010}$A=20+21+22+...+22010
Câu hỏi tương tự Đọc thêm