Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Chị gái xinh đẹp à. Câu hỏi của chị khó quá ko ai trả lời. Thôi thì.......k cho mem đi😉
![](https://rs.olm.vn/images/avt/0.png?1311)
phân số 5n+6/8n+7 rút gọn được cho a
=>a là ƯCLN﴾5n+6;8n+7﴿
Đặt ƯCLN﴾5n+6;8n+7﴿=d
=>5n+6 chia hết cho d và 8n+7 chia hết cho d
=>﴾5n+6﴿‐﴾8n+7﴿ chia hết cho d
=>﴾40n+48﴿‐﴾40n+35﴿ chia hết cho d
=>13 chia hết cho d
=>d là ƯCLN nên d=13
=>a ∈∈ {1;13}
Bạn làm sai rồi
Gọi a là ước nguyên tố của 5n+6 và 8n+7
\(\Rightarrow\hept{\begin{cases}8n+7⋮a\Rightarrow5\left(8n+7\right)⋮a\Rightarrow40n+35⋮a\\5n+6⋮a\Rightarrow8\left(5n+6\right)⋮a\Rightarrow40n+48⋮a\end{cases}}\)
\(\Rightarrow\left(40n+48\right)-\left(40n+35\right)⋮a\)
\(\Rightarrow13⋮a\)
Mà a là số nguyên tố nên a=13
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3
Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6 (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(A=\frac{n+3}{n-2}\left(ĐKXĐ:x\ne2\right)\)
Ta có:\(A=\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=1+\frac{5}{n-2}\)
Để A nguyên thì 5 chia hết cho n-2. Hay \(\left(n-2\right)\inƯ\left(5\right)\)
Ư (5) là:[1,-1,5,-5]
Do đó ta có bảng sau:
n-2 | -5 | -1 | 1 | 5 |
n | -3 | 1 | 3 | 7 |
Vậy để A nguyên thì n=-3;1;3;7
Vì n thuộc Z nên n+3 và n-2 cũng thuộc Z
Mà n+3/n-2 thuộc Z nên n+3 chia hết cho n-2
=>(n-2)+5chia hết cho n-2
=>5 chia hết cho n-2
=>n-2 thuộc ƯC (5)={5;-5;1;-1}
=>n thuộc {7;-3;3;1)
Vậy n thuộc..........
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo bài ra , ta có 3 trg hợp n :
TH1 : n chia hết cho 3 .
Nếu n chia hết cho 3 thì tích trên đã đc chia hết cho 3 .
TH2 : n chia 3 dư 1
Nếu n chia 3 dư 1 thì (n + 2 ) sẽ chia hết cho 3 => tích n(n+2)(n+7) chia hết cho 3 , vì nếu trong tích có một thừa số chia hết cho 3 thì cả tích sẽ chia hết cho 3 .
TH3 : n chia 3 dư 2
Nếu n chia 3 dư 2 thì (n+7) sẽ chia hết cho 3 => tích n(n+2)(n+7) chia hết cho 3 , vì nếu trong tích có một thừa số chia hết cho 3 thì cả tích sẽ chia hết cho 3 .
Vậy : Với mọi trg hợp n thì tích n(n+2)(n+7) đều chia hết cho 3 .
ta có: n(n+2)(n+7) \(⋮\)3.
đặt A = n(n+2)(n+7)
vì n là số tự nhiên. khi chia n cho 3 ta có 3 dạng:n=3k; n=3k+1; n=3k+2 ( k\(\in\) N )
nếu n=3k => n \(⋮\)3
=> A \(⋮\)3. (1)
nếu n=3k+1 => n+2=3k+1+2
=3k+3 \(⋮\)3
=> A \(⋮\)3 (2)
nếu n=3k+2 => n+7=3k+2+7
=3k+9 \(⋮\)3
=> A \(⋮\)3 (3)
từ (1);(2) và (3) => A \(⋮\)3 với mọi n .
vậy n(n+2)(n+7) \(⋮\)3.với mọi n .
chcs năm mới vui vẻ, k nha...
day so tren co so so hang la
(2n-2):2+1=n(so hang)
tong tren la
(2n+2).n:2=n.(n+1)
hok tot
2+4+6+8+..+2n
=(2n+2).[ ( 2n-2) : 2+1] :2
=2.(n+1).n:2
=n.(n+1)