K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2016

Ta có :

\(S=2015+\frac{2015}{1+2}+\frac{2015}{1+2+3}+...+\frac{2015}{1+2+3+..+2016}\)

    \(=2015.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+..+2016}\right)\)

    \(=2015.\left(1+\frac{1}{\frac{\left(2+1\right).2}{2}}+\frac{1}{\frac{\left(3+1\right).3}{2}}+...+\frac{1}{\frac{\left(2016+1\right).2016}{2}}\right)\)

    \(=2015.\left(\frac{2}{2}+\frac{2}{2.\left(2+1\right)}+\frac{2}{3.\left(3+1\right)}+...+\frac{2}{2016.\left(2016+1\right)}\right)\)

    \(=2015.2.\left(\frac{1}{2}+\frac{1}{2.\left(2+1\right)}+\frac{1}{3.\left(3+1\right)}+...+\frac{1}{2016.\left(2016+1\right)}\right)\)

    \(=2015.2.\left(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\right)\)

    \(=2015.2.\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\right)\) 

    \(=2015.2.\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{2017}\right)\)

    \(=2015.2.\left(1-\frac{1}{2017}\right)\)

    \(=2015.2.\frac{2016}{2017}\)

    =\(\frac{2015.2.2016}{2017}\)

    =\(\frac{8124480}{2017}\)

Vậy \(S=\frac{8124480}{2017}\)

 

    

7 tháng 4 2016

yeu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26 tháng 3 2016

=1/2 . 2/3 ....1999/2000

=1.2....1999/2.3...2000

1/2000

26 tháng 3 2016

 

B= 3/2.4/3. ....2001/2000

B = 3.4....2001/2.3....2000

B =2001/2

17 tháng 4 2016

a) ta có:

\(\frac{-1}{2}-1\le x\le\frac{1}{2}.3\)

hay \(-1,5\le x\le1,5\)

vì x\(\in Z\) nên ta chọn x=-1,0,1

17 tháng 4 2016

ta có:

3S=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\)

3S-S=\(\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^9}\right)\)

2S=1-\(\frac{1}{3^9}\)

s=\(\left(1-\frac{1}{3^9}\right):2\)

20 tháng 3 2016

dễ khủng khíp , động não chút đi

20 tháng 3 2016

THÌ HÃY LÀ HỘ ĐI

 

4 tháng 3 2018

có sai đề ko

mk làm ko đc

4 tháng 3 2018

mk nghĩ đây là đề đúng

\(\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}\ge\dfrac{3}{2}\)

Ta có:

\(\left\{{}\begin{matrix}\dfrac{a}{1+b^2}=a-\dfrac{ab^2}{1+b^2}\\\dfrac{b}{1+c^2}=b-\dfrac{bc^2}{1+c^2}\\\dfrac{c}{1+a^2}=c-\dfrac{ca^2}{1+a^2}\end{matrix}\right.\)

Áp dụng bđt AM-GM ta có:

\(\dfrac{ab^2}{1+b^2}\le\dfrac{ab^2}{2b}=\dfrac{ab}{2}\)

\(\Rightarrow a-\dfrac{ab^2}{1+b^2}\ge a-\dfrac{ab}{2}\) (1)

C/m tg tự ta có:

\(\left\{{}\begin{matrix}b-\dfrac{bc^2}{1+c^2}\ge b-\dfrac{bc}{2}\\c-\dfrac{ca^2}{1+a^2}\ge c-\dfrac{ac}{2}\end{matrix}\right.\) (2)

Chứng minh điều sau:\(ab+bc+ca\le3\)

Ta có:

\((a+b+c)^2\ge3(ab+bc+ca)\)

\(\Leftrightarrow9\ge3ab+3bc+3ca\)

\(\Leftrightarrow ab+bc+ca\le3\)

Từ (1) và (2)

\(\Rightarrow VT\ge a+b+c-\dfrac{ab+bc+ca}{2}\)

\(ab+bc+ca\le3\)

Nên \(VT\ge a+b+c-\dfrac{ab+bc+ca}{2}\ge3-\dfrac{3}{2}=\dfrac{3}{2}\)

=> ĐPCM

15 tháng 3 2016

B= \(\frac{1}{199}\) + \(\frac{2}{198}\) + ... + \(\frac{198}{2}\) + \(\frac{199}{1}\)

B= ( \(\frac{1}{199}\) + 1) + ( \(\frac{2}{198}\) +1) +...+ ( \(\frac{198}{2}\) +1) +1 ( Mình tách 199 ra thành 199 số hạng rồi cộng thêm vào mỗi phân số)

B= \(\frac{200}{199}\) + \(\frac{200}{198}\) + \(\frac{200}{197}\) +...+\(\frac{200}{2}\)

B= 200( \(\frac{1}{199}\) + \(\frac{1}{198}\) +...+ \(\frac{1}{2}\) ) 

B= 200 ( \(\frac{1}{2}\) + \(\frac{1}{3}\) +...+ \(\frac{1}{198}\) + \(\frac{1}{199}\) ) = 200 A

Ta thấy A=1A, B=200A Suy ra \(\frac{A}{B}\) = \(\frac{1}{200}\)

 

15 tháng 3 2016

Giúp mình đi. Mai phải nộp bài rồi khocroi

13 tháng 3 2016

bài 2 :338350

23 tháng 3 2016

mn giúp

14 tháng 4 2017

Này bạn làm sao để ra dấu phân số vậy