Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(F=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}\)
\(F=\left(\frac{1}{2}+\frac{1}{2^3}+....+\frac{1}{2^{99}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\right)\)
\(F=\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\right)-2.\left(\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\right)\)
\(F=\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{50}}\right)\)
\(F=\frac{1}{2^{51}}+\frac{1}{2^{52}}+...+\frac{1}{2^{100}}\)
\(E=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(2E=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(2E-E=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(E=1-\frac{1}{2^{100}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^{3.}}+.............+\frac{1}{2^{100}}\)
\(2B=1+\frac{1}{2}+\frac{1}{2^2}+.................+\frac{1}{2^{99}}\)
\(2B-B=1-\frac{1}{2^{100}}\)
\(B=1-\frac{1}{2^{100}}\)
\( C=\frac{1}{2}-\frac{1}{2^2}+.................+\frac{1}{2^{99}}-\frac{1}{2^{100}}\)
\(2 C=1-\frac{1}{2}+......................+\frac{1}{2^{98}}-\frac{1}{2^{99}}\)
\(2 C+C=1-\frac{1}{2^{100}}\)
\(C=\left(1-\frac{1}{2^{100}}\right):3\)
Tính :
\(S=2+2^2+2^3+...+2^{100}\)
\(P=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)S=2+22+23+...+2100
2S=2(2+22+23+...+2100)
2S=22+23+...+2101
2S-S=(22+23+...+2101)-(2+22+23+...+2100)
S=2101-2
b)\(P=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\)
\(3P=3\left(\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{100}}\right)\)
\(3P=1+\frac{1}{3}+...+\frac{1}{3^{99}}\)
\(3P-P=\left(1+\frac{1}{3}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)\)
\(2P=1-\frac{1}{3^{100}}\)
\(P=\left(1-\frac{1}{3^{100}}\right):2\)
ngài Kiệt ღ ๖ۣۜLý๖ۣۜ đúng là không ái sánh bằng sự gian xảo này
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)
\(\Rightarrow\)\(A< 1\) ( đpcm )
Vậy \(A< 1\)
Chúc bạn học tốt ~
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt A = \(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
2A = \(2.\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
2A = \(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
2A - A = \(\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
A = \(2-\frac{1}{2^{100}}\)
A = \(\frac{2^{101}-1}{2^{100}}\)
Đặt \(D=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{100}}\)
\(\Rightarrow2D=3+1+\frac{1}{2^2}+....+\frac{1}{2^{99}}\)
\(\Rightarrow D=3-\frac{1}{2^{100}}\)
\(\Rightarrow D=\frac{2^{100}\cdot3-1}{2^{100}}\)
Vậy \(D=\frac{2^{100}\cdot3-1}{2^{100}}\)
\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{100}}\)
\(S=1+\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{100}}\right)\)
đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{100}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{99}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)
\(A=1-\frac{1}{2^{100}}\)
thay A=\(1-\frac{1}{2^{100}}\)vào S ta có: \(S=1+1-\frac{1}{2^{100}}=2-\frac{1}{2^{100}}\)