\(\frac{1+3+3^2+3^3+...3^{2000}}{1-3^{2001}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2019

Đặt A=1+3+32+....+32000

=> 3A=3+32+33+.....+32001

=> 3A-A=2A=32001-1

=> A=(32001-1)/2

=> S=(32001-1)/2(1-32001)

=> S=-1/2

Đúng thì tk cho mình nha. 

Đặt \(A=1+3+3^2+3^3+...+3^{2000}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{2001}\)

\(\Rightarrow3A-A=3^{2001}-1\)

\(\Rightarrow2A=3^{2001}-1\)

\(\Rightarrow A=\frac{3^{2001}-1}{2}\)

Vậy \(S=\frac{\frac{3^{2001}-1}{2}}{1-3^{2001}}\)\(=\frac{3^{2001}-1}{2}\cdot\frac{1}{1-3^{2001}}=\frac{3^{2001}-1}{2\cdot\left(1-3^{2001}\right)}=-\frac{1}{2}\)

18 tháng 6 2019

Bài 2 

\(a,\)\(\left(x^2+7\right)\left(x^2-49\right)< 0\)

Vì \(x^2+7>0\)\(\Rightarrow x^2-49< 0\)

\(\Rightarrow\left(x-7\right)\left(x+7\right)< 0\)

\(...\)

18 tháng 6 2019

Bài 2:

a) \(\left(x^2+7\right).\left(x^2-49\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x^2+7< 0\\x^2-49>0\end{cases}}\)hoặc \(\hept{\begin{cases}x^2+7>0\\x^2-49< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2< -7\\x^2>49\end{cases}\left(loai\right)}\)hoặc \(\hept{\begin{cases}x^2>-7\\x^2< 49\end{cases}}\)

\(\Leftrightarrow-7< x^2< 49\)

Mà \(x^2\ge0\)và  \(x^2\)là 1 SCP

\(\Rightarrow x^2\in\left\{1;4;9;16;25;36\right\}\)

\(\Rightarrow x\in\left\{1;2;3;4;5;6\right\}\)

Vậy \(x\in\left\{1;2;3;4;5;6\right\}\)

7 tháng 5 2017

Ta có:

1/1! = 1

1/2! = 1/1.2

1/3! = 1/2.3

1/4! < 1/3.4

1/5! < 1/4.5

.........

1/2001! < 1/2000.2001

==> S < 1 + 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + ... + 1/2000.2001

S < 1 + 1 - 1/2 + 1/2 - 1/3 + ... + 1/2000 - 1/2001

S < 1 + 1 - 1/2001

S < 2 - 1/2001 < 2 < 3

==> S < 3

13 tháng 11 2015

Nguyễn Bá Tú vip Tân Kỳ nói dễ sao ko làm điavt374156_60by60.jpg

5 tháng 8 2018

x= -2002 nhan. Dùng máy tính cầm tay sẽ ra

5 tháng 8 2018

\(\frac{x+1}{2001}+\frac{x+2}{200}=\frac{x+3}{1999}+\frac{x+4}{1998}\)

\(\left(\frac{x+1}{2001}+1\right)+\left(\frac{x+2}{2000}+1\right)=\left(\frac{x+3}{1999}+1\right)+\left(\frac{x+4}{1998}+1\right)\)

\(\frac{x+2002}{2001}+\frac{x+2002}{2000}=\frac{x+2002}{1999}+\frac{x+2002}{1998}\)

\(\frac{x+2002}{2001}+\frac{x+2002}{2000}-\frac{x+2002}{1999}-\frac{x+2002}{1998}=0\)

\(\left(x+2002\right).\left(\frac{1}{2001}+\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)

\(\Rightarrow x+2002=0\)

\(\Rightarrow x=0-2002\)

\(\Rightarrow x=-2002\)