Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Ta có: \(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
2: Ta có: \(100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=100+99+98+97+...+2+1\)
=5050

2) 100^2-99^2+98^2-97^2+...+2^2-1^2
=(100-99)(100+99)+(98-97)(98+97)+...+(2-1)(2+1)
=1.199+1.195+...+1.3
= 199+195+191+...+7+3
= 5050
cho tam giác ABC có Â =100 ,M là trung điểm của BC tren tia doi cua tia MA lay diem K sao cho KM=MA
a )tính số đo gocABK
b) Về phía ngoài của tam giác ABC vẽ các đoạn thẳng ADvuong góc và bằng AB ,AE vuông góc và bằng AC, chứng minh tam giác ABk bang tam giác DAE
C/M :MA vuong goc DE

như thế này chứ:
A=1002-992+982-972+...+22-12
B=12-22+32-42+...-20082-20092
C=3.(22+1)(24+1)(28+1)(216+1)-232

a) \(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+....+\left(2^2-1^2\right)\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+....+\left(2-1\right)\left(2+1\right)\)
\(=199+195+....+3\)
\(=\frac{\left(199+3\right)\left[\left(199-3\right):4+1\right]}{2}\)
\(=5050\)

1002 - 992 + 982 - 972 + ... + 42 - 32 + 22 - 12
= (1002 - 992) + (982 - 972) + ... + (42 - 32) + (22 - 12)
= (100 + 99).(100 - 99) + (98 + 97).(98 - 97) + ... + (4 + 3).(4 - 3) + (2 + 1).(2 - 1)
= (100 + 99) . 1 + (98 + 97) . 1 + ... + (4 + 3) . 1 + (2 + 1) . 1
= 100 + 99 + 98 + 97 + ... + 4 + 3 + 2 + 1
= \(\left[\left(100-1\right):1+1\right].\frac{100+1}{2}\)
= \(100.\frac{101}{2}\)
= \(5050\)

B=(2+1)(22+1)(24+1)(28+1)(216+1)−232
=1.(2+1)(22+1)(24+1)(28+1)(216+1)−232
=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)−232
=(22-1)(22+1)(24+1)(28+1)(216+1)−232
=(24-1)(24+1)(28+1)(216+1)−232
=(28-1)(28+1)(216+1)−232
=(216-1)(216+1)−232
=232-1-232
=-1
A = ( 2 +1 )( 2^2 + 1 )...(2^16+1) - 2^32
A = ( 2 - 1) ( 2 + 1 )(2^2 + 1) .... (2^16 + 1) - 2^32
A = (2^2 - 1) (2^2 + 1) ...(2^16 + 1) - 2^32
A =( 2^ 4 - 1)( 2^4 + 1 )( 2^8 + 1) (2^16+1) -2^32
A = ( 2^8 - 1)( 2^ 8 + 1) ( 2^ 16 + 1)- 2^32
A = ( 2^16 - 1 )( 2^16 + 1) - 2^32
A = 2^32 - 1 - 2^32
A = - 1
\(=\left(2^2-1^2\right)+\left(4^2-3^2\right)+...+\left(100^2-99^2\right)\)
\(=\left(2+1\right)\left(2-1\right)+\left(4+3\right)\left(4-3\right)+...+\left(100+99\right)\left(100-99\right)\)
\(=1+2+3+4+...+100=\frac{\left(100+1\right).100}{2}=5050\)
Bài làm :
Ta có :
\(-1^2+2^2-3^2+4^2-5^2+....+100^2\)
\(=\left(2^2-1^2\right)+\left(4^2-3^2\right)+....+\left(100^2-99^2\right)\)
\(=\left(2+1\right)\left(2-1\right)+\left(4+3\right)\left(4-3\right)+....+\left(100+99\right)\left(100-99\right)\)
\(=1+2+3+4+....+100=\frac{\left(100+1\right).100}{2}=5050\)
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!