Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
ai có lòng tick tôi lên 15 tôi cảm ơn nếu ko tick thì số đen sẽ đến với bn
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2000}{2002}\)
=> \(2.\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2000}{2002}\)
=> 2.\(\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2000}{2002}\)
=> 2.\(\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2000}{2002}\)
=> 2.\(\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{2000}{2002}\)
=> 1-\(\dfrac{2}{x+1}-\dfrac{2000}{2002}=0\)
=> \(1-\dfrac{2000}{2002}=\dfrac{2}{x+1}\)
=> \(\dfrac{2}{2002}=\dfrac{2}{x+1}\)
=> x+1=2002
=> x=2002-1=2001
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(7^{2005}+7^{2004}\right):7^{2004}=7^{2005}:7^{2004}+7^{2004}:7^{2004}=7+1=8\)
\(\left(11^{2003}+11^{2002}\right):11^{2002}-11^{2003}:11^{2002}+11^{2002}:11^{2002}=11+1=12\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) (2736 – 75) – 2736
= 2736 – 75 – 2736
= (2736 – 2736) – 75
= 0 – 75
= – 75
b) (- 2002) – (57 – 2002)
= (– 2002) – 57 + 2002
= (– 2002 + 2002) – 57
= 0 – 57
= – 57
a) (2736 – 75) - 2736
= 2736 - 75 – 2736 (bỏ dấu ngoặc có dấu "+" đằng trước)
= 2736 – 2736 - 75
= 0 - 75
= -75
2) – (57 - 2002)
= -2002 - 57 + 2002 (bỏ dấu ngoặc có dấu "-" đằng trước)
= -2002 + 2002 - 57
= 0 - 57
= -57
![](https://rs.olm.vn/images/avt/0.png?1311)
a ) VT = a+ ( a+1) + (a+2) +....+ 2002 = (a+ 2002)(2002-a)/2
=> 20022 -a2 = 2.2002
=> a2 = 20022 -2.2002 =2002.200=400400 không là số chính phương
=> không có a thuộc Z nào thỏa mãn.
b) tuong tự cau a
20022 -a2 = 2.4003
=> a2 = 20022 - 2.4003 =3999998 không là số chính phương
=> không có a thuộc Z nào thỏa mãn.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a: \(\Leftrightarrow\left|x+\dfrac{4}{15}\right|=-2.15+3.75=\dfrac{8}{5}\)
=>x+4/15=8/5 hoặc x+4/15=-8/5
=>x=4/3 hoặc x=-28/15
b: \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{5}{3}x=-\dfrac{1}{6}\\\dfrac{5}{3}x=\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{6}:\dfrac{5}{3}=\dfrac{-3}{30}=\dfrac{-1}{10}\\x=\dfrac{1}{10}\end{matrix}\right.\)
c: \(\Leftrightarrow\left|x-1\right|-1=1\)
=>|x-1|=2
=>x-1=2 hoặc x-1=-2
=>x=3 hoặc x=-1
Bài 2:
b: \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Leftrightarrow x=y=-\dfrac{9}{25}\)
Bài 3:
a: \(A=\left|x+\dfrac{15}{19}\right|-1>=-1\)
Dấu '=' xảy ra khi x=-15/19
b: \(\left|x-\dfrac{4}{7}\right|+\dfrac{1}{2}>=\dfrac{1}{2}\)
Dấu '=' xảy ra khi x=4/7
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 3: A=2018-|x+2019|. Vì |x+2019|\(\ge\)0 nên -|x+2019|\(\le\)0=>2018-|x+2019|\(\le\) 2. Vậy A có GTLN = 2 khi x+2019=0 hay x=-2019. B=-10-\(\left|2x-\dfrac{1}{1009}\right|\). Vì \(\left|2x-\dfrac{1}{1009}\right|\ge0\Rightarrow-\left|2x-\dfrac{1}{1009}\right|\le0\Rightarrow-10-\left|2x-\dfrac{1}{1009}\right|\le-10\). Vậy B có GTLN = -10 khi 2x-\(\dfrac{1}{1009}=0\) => \(2x=\dfrac{1}{1009}\Rightarrow x=\dfrac{1}{1009}:2=\dfrac{1}{2018}\)
Bài 2: A=\(\left|5x+1\right|-\dfrac{3}{8}\). Vì \(\left|5x+1\right|\ge0\Rightarrow\left|5x+1\right|-\dfrac{3}{8}\ge\dfrac{-3}{8}\). Vậy A có GTNN = \(\dfrac{-3}{8}\) khi 5x+1= 0=> 5x= -1=> x = \(\dfrac{-1}{5}\). B=\(\left|2-\dfrac{1}{6}x\right|+0,25\) , vì \(\left|2-\dfrac{1}{6}x\right|\ge0\Rightarrow\left|2-\dfrac{1}{6}x\right|+0,25\ge0,25\) . Vậy B có GTNN = 0,25 khi \(2-\dfrac{1}{6}x=0\Rightarrow\dfrac{x}{6}=2\Rightarrow x=2.6=12\)
ĐK: \(x\in Z\)
a) Giải:
Để \(A\) đạt giá trị lớn nhất
\(\Leftrightarrow\dfrac{2002}{\left|x\right|+2002}\) đạt giá trị lớn nhất
\(\Leftrightarrow\left|x\right|+2002\) phải nhỏ nhất \(\Leftrightarrow\left|x\right|=0\)
\(\Rightarrow A_{Max}=\dfrac{2002}{0+2002}=\dfrac{2002}{2002}=1\)
Vậy giá trị lớn nhất của \(A\) là \(1\)
b) Để \(B\) đạt giá trị lớn nhất
\(\Leftrightarrow\dfrac{\left|x\right|+2002}{-2003}\) phải lớn nhất
Vì \(\left\{{}\begin{matrix}\left|x\right|+2002>0\\-2003< 0\end{matrix}\right.\)\(\Rightarrow\dfrac{\left|x\right|+2002}{-2003}< 0\)
Mà \(\forall-a< 0\) nếu muốn \(-a\) lớn nhất \(\Leftrightarrow a\) nhỏ nhất
\(\Leftrightarrow\left|x\right|+2002\) phải nhỏ nhất \(\Leftrightarrow\left|x\right|=0\)
\(\Rightarrow B_{Max}=\dfrac{0+2002}{-2003}=\dfrac{2002}{-2003}\)
Vậy giá trị lớn nhất của \(B\) là \(\dfrac{2002}{-2003}\)
mọi người ơi giúp với ạ![khocroi khocroi](https://hoc24.vn/media/cke24/plugins/smiley/images/khocroi.png)