\(x^{12}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 4 2020

Lời giải:

Nếu $a\neq 0$ thì đa thức $M$ có bậc là $12+3=15\neq 5$ (trái với đề bài)

Nếu $a=0$ thì $M=-2xy+6x^3y^2$ có bậc $3+2=5$ (thỏa mãn)

Vậy $a=0$

---------------------

$N=-3xy^4+6x^3y^7+(a+1)x^3y^7-7xy$

$=-3xy^4+(a+7)x^3y^7-7xy$

Nếu $a+7\neq 0$ thì bậc của $N$ là $3+7=10\neq 5$ (trái đề)

Nếu $a+7=0$ thì $N=-3xy^4-7xy$ có bậc $1+4=5$ (thỏa đề)

Vậy $a+7=0\Leftrightarrow a=-7$

25 tháng 5 2020

hangbich ơi chị nhớ em không????

25 tháng 5 2020

luonghong567 ở trong hoidap247.com ý

Những ai đang on olm ơi

Nếu các bạn thấy mjk cần kiếm tiền thêm thì mjk sẽ giúp

Các bạn có đt đúng ko

Các bạn tải ứng dụng đọc báo VN ngày nay nhé

Xong các bạn ấn vào cá nhân hộ mjk (góc bên phải)

Xong có chữ Nhập mã giới thiệu ấn vào nhé 

Xong các bạn ấn 8AQCV  nhé

Cả các bạn và mjk đều có tiền luôn

Xong rồi ae cứ kiếm tiền hộ thêm bố mẹ

Như mjk nè

cái này cũng lãi mak

26 tháng 3 2019

\(a,\) \(M+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)

\(M=\left(6x^2+9xy-y^2\right)-\left(5x^2-2xy\right)\)

\(M=6x^2+9xy-y^2-5x^2+2xy\)

\(M=\left(6x^2-5x^2\right)+\left(9xy+2xy\right)-y^2\)

\(M=x^2+11xy-y^2\)

26 tháng 3 2019

\(b,\) \(\left(3xy-4y^2\right)-N=x^2-7xy+8y^2\)

\(N=\left(3xy-4y^2\right)-\left(x^2-7xy+8x^2\right)\)

\(N=3xy-4y^2-x^2+7xy-8x^2\)

\(N=\left(3xy+7xy\right)-4y^2-\left(x^2-8x^2\right)\)

\(N=10xy-4y^2+7x^2\)

23 tháng 5 2020

Bài 1:

\(A=\left(x^3.x^3.x^2\right).\left(y.y^4\right).\left(\frac{2}{5}.\frac{-5}{4}\right)\)

\(A=x^8.y^5.\left(-\frac{1}{2}\right)\)

\(B=\left(x^5.x.x^2\right).\left(y^4.y^2.y\right).\left(\frac{-3}{4}.\frac{-8}{9}\right)\)

\(B=x^8.y^7.\frac{2}{3}\)

Bài 2:

\(A=\left(15.x^2.y^3-12.x^2.y^3\right)+\left(11x^3.y^2-8.x^3.y^2\right)+\left(7x^2-12x^2\right)\)

\(A=3.x^2.y^3+2.x^3.y^2-5x^2\)

B tương tự nhé, đáp án là (theo mình)

\(B=\frac{5}{2}.x^5.y+\frac{7}{3}.x.y^4-\frac{1}{4}.x^2.y^3\)

19 tháng 3 2018

e, \(x^7-80x^6+80x^5-80x^4+80x^3-80x^2+80x+15\)

đặt 80=x+1 ta đc

\(x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x+15=x^7-x^7-x^6+x^6+x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x+15=x+15=79+15=94\)

AH
Akai Haruma
Giáo viên
5 tháng 5 2018

Lời giải

Từ \(x^2+y^2=5\) ta có:

Ta có: \(A=4x^4+7x^2y^2+3y^4+5y^2\)

\(=4x^4+7x^2y^2+3y^4+y^2(x^2+y^2)\)

\(=4x^4+8x^2y^2+4y^4=4(x^4+2x^2y^2+y^4)\)

\(=4(x^2+y^2)^2=4.5^2=100\)

5 tháng 5 2018

Ko bik cách này đúng hay sai nếu đúng thì tick nha

A\(=4x^2\left(x^2+y^2\right)+3y^2\left(x^2+y^2\right)+5y^2\)

A\(=20x^2+15x^2+5y^2\)

\(\Rightarrow A=20x^2+\left(15+5\right)y^2\)

\(\Rightarrow20\left(x^2+y^2\right)\)

\(\Rightarrow\)\(A=100\)

1 tháng 5 2018

ko bít làm

19 tháng 4 2017

a) A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 tại x = 5 và y = 4.

Trước hết ta thu gọn đa thức

A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 = x2 + 2xy + y3

Thay x = 5; y = 4 ta được:

A = 52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.

Vậy A = 129 tại x = 5 và y = 4.

b) M = xy - x2y2 + x4y4 – x6y6 + x8y8 tại x = -1 và y = -1.

Thay x = -1; y = -1 vào biểu thức ta được:

M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8

= 1 -1 + 1 - 1+ 1 = 1.



22 tháng 1 2018

\(a.\)\(x^2+2xy-3x^3+2y^3+3x^3-y^3\)

=\(x^2+2xy+y^3\)

\(thếx=5;y=4\) \(ta\) \(có\)

= \(5^2+2.5.4+4^3\)

= 25 + 40 + 64

=129

b.

\(xy-x^2y^2+x^4y^4-x^6y^6+x^8y^8\)

thế \(x=-1;y=-1\) ta có:

(-1).(-1) - \(\left(-1\right)^2.\left(-1\right)^2\)+\(\left(-1\right)^4.\left(-1\right)^4-\left(-1\right)^6.\left(-1\right)^6+\left(-1\right)^8.\left(-1\right)^8\)

= 1 - 1.1 +1.1 - 1.1 +1.1

= 1-1+1-1+1

= 1