Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình làm phần sườn còn phần kết luận bạn tự làm
- \(A=x^2-5x+3=\left(x-\frac{5}{2}\right)^2-\frac{13}{4}\ge-\frac{13}{4}\)
- \(B=-x^2-x=-\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
- \(C=2x^2+5x+7=2\left(x+\frac{5}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\)
- \(D=-x^2+5x+7=-\left(x-\frac{5}{2}\right)^2+\frac{53}{4}\le\frac{53}{4}\)
a) \(A=x^2-5x+3\)
\(A=x^2-5x+\frac{25}{4}-\frac{13}{4}\)
\(A=\left(x-\frac{5}{2}\right)^2-\frac{13}{4}\)
Có: \(\left(x-\frac{5}{2}\right)^2\ge0\Rightarrow\left(x-\frac{5}{2}\right)^2-\frac{13}{4}\ge-\frac{13}{4}\)
Dấu = xảy ra khi: \(\left(x-\frac{5}{2}\right)^2=0\Rightarrow x-\frac{5}{2}=0\Rightarrow x=\frac{5}{2}\)
Vậy: \(Min_A=-\frac{13}{4}\) tại \(x=\frac{5}{2}\)
b) \(B=\left(-x^2\right)-x\)
\(B=-\left(x^2+x\right)\)
Có: \(x^2\ge x\Rightarrow x^2+x\ge0\Rightarrow-\left(x^2+x\right)\le0\)
Dấu = xảy ra khi: \(-\left(x^2+x\right)=0\Rightarrow x^2+x=0\Rightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)
Vậy: \(Max_B=0\) tại \(\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A = (x-1)(x+2)(x+3)(x+6)
= (x - 1)(x + 6)(x + 2)(x + 3)
= ( x2 + 5x - 6)(x2 + 5x + 6)
= ( x2 + 5x )2 - 36 \(\ge\) -36
Dấu "=" <=> x = 0 hoặc x = -5
Vậy A min = -36 <=> x = 0 hoặc x = - 5 .
B=x2 - 2x+y2 +4y+8
=x2-2x+1+y2+4y+4+3
=(x-1)2+(y+2)2+3
=(x-1)2+(y+2)2+3 \(\ge\)3
Dấu "=" <=>x=1 và y=-2
Vậy A min=3 <=>x=1 và y=-2
![](https://rs.olm.vn/images/avt/0.png?1311)
1. nhóm (x-1)(x+6)(x+2)(x+3)
nhân vào
sẽ ra (x^2+6x-x-6)(x^2+3x+2x+6)
từ đó suy ra
(x^2-5x)^2 - 6^2
vì (x^2-5x)^2 lun lớn hon ko
nên dấu “=” xảy ra khi (x^2-5x)^2=0
x^2-5x = 0 <=> x(x-5)=0 <=> x= 0 hoặc x = 5
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có :\(\left(x^2y^2-xy+1\right)\left(1+xy\right)=x^3y^3+1=\left(xy\right)^3+1=3^3+1=28\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)P=5x(x2-3)+x2(7-5x)-7x2
=5x3-15x+7x2-5x3-7x2
=15x
thay x=5 vào P=15x ta được
15.5=75
b)Q=x(x-y)+y(x-y)
=x2-xy+xy-y2
=x2-y2
Thay x=1,5 ; y=10 vào Q=x2-y2 ta được :
1,52-102=\(\frac{-391}{4}\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
5x(x2-3) +x2(7-5x)-7x2
=5x3-15x +7x2 -5x3 -7x2
=-15x
thay x=-5, Ta có
(-15).(-5) =75