K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2021

\(\frac{2019}{1\times2}+\frac{2019}{2\times3}+\frac{2019}{3\times4}+...+\frac{2019}{2018\times2019}\)

\(=2019\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{2018\times2019}\right)\)

\(=2019\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)

\(=2019\left(1-\frac{1}{2019}\right)\)

\(=2019\left(\frac{2019}{2019}-\frac{1}{2019}\right)\)

\(=2019\times\frac{2018}{2019}\)\(=\frac{2019\times2018}{2019}=2018\)

25 tháng 1

Câu 1: Thực hiện phép tính A = -125 x 2^3 + 71 x 53 + 53 x (-29) - 42 x 53 Bước 1: Tính các giá trị đơn giản 2^3 = 8 -125 x 8 = -1000 71 x 53 = 3763 53 x (-29) = -1537 -42 x 53 = -2226 Bước 2: Thay vào biểu thức ban đầu A = -1000 + 3763 - 1537 - 2226 Bước 3: Tiến hành cộng và trừ A = -1000 + 3763 = 2763 A = 2763 - 1537 = 1226 A = 1226 - 2226 = -1000 Vậy, A = -1000. Câu 2: Tính giá trị biểu thức A = 2019 1 × 2 + 2019 2 × 3 + 2019 3 × 4 + ⋯ + 2019 2018 × 2019 1×2 2019 ​ + 2×3 2019 ​ + 3×4 2019 ​ +⋯+ 2018×2019 2019 ​ Biểu thức này có thể viết lại dưới dạng tổng: 𝐴 = ∑ 𝑘 = 1 2018 2019 𝑘 ( 𝑘 + 1 ) A=∑ k=1 2018 ​ k(k+1) 2019 ​ Để đơn giản hóa mỗi hạng tử, ta phân tích phân số 1 𝑘 ( 𝑘 + 1 ) k(k+1) 1 ​ thành: 1 𝑘 ( 𝑘 + 1 ) = 1 𝑘 − 1 𝑘 + 1 k(k+1) 1 ​ = k 1 ​ − k+1 1 ​ Do đó, ta có thể viết lại biểu thức A như sau: 𝐴 = 2019 × ( 1 1 − 1 2 + 1 2 − 1 3 + ⋯ + 1 2018 − 1 2019 ) A=2019×( 1 1 ​ − 2 1 ​ + 2 1 ​ − 3 1 ​ +⋯+ 2018 1 ​ − 2019 1 ​ ) Tất cả các hạng tử sẽ tự rút gọn, và ta chỉ còn lại: 𝐴 = 2019 × ( 1 − 1 2019 ) A=2019×(1− 2019 1 ​ ) Bây giờ tính toán: 𝐴 = 2019 × 2018 2019 = 2018 A=2019× 2019 2018 ​ =2018 Vậy A = 2018.


8 tháng 8 2021

Bạn tham khảo bài giải dưới nhé

Cre: Olm

   undefined

Hc tốt:)

14 tháng 2 2019

a, 2x+2y/x+y=2

=> 2(x+y)/x+y=2

=>2/1=2

=> đpcm

Câu b thì mình nghĩ nó không thể bằng được đâu bạn

14 tháng 2 2019

a)

Ta có \(\dfrac{2x+2y}{x+y}=\dfrac{2\left(x+y\right)}{x+y}=2\)

\(\left(x+y\ne0\right)\)

b) Cậu xem lại đề nhé, sai rồi kìa

21 tháng 4 2019

A= 2019.2018 -174.2018 -2019.2018+2019.174

A=174 (2019-2018)

A= 174

21 tháng 4 2019

A=(2019-174)2018-2019(2018-174)

A=(2019.2018-2018.174)-(2019.2018-2018.174)

A=0

VC
1 tháng 10 2019

\(A=\frac{2019^{2020}+1}{2019^{2021}+1}\)và \(B=\frac{2019^{2018}+1}{2019^{2019}+1}\)

Xét \(A=\frac{2019^{2020}+1}{2019^{2021}+1}\Rightarrow2019A=\frac{2019^{2021}+2019}{2019^{2021}+1}=1+\frac{2019}{2019^{2021}+1}\)

Xét \(B=\frac{2019^{2018}+1}{2019^{2019}+1}\Rightarrow2019B=\frac{2019^{2019}+2019}{2019^{2019}+1}=1+\frac{2018}{2019^{2019}+1}\)

Vì \(1+\frac{2018}{2019^{2021}+1}< 1+\frac{2018}{2019^{2019}+1}\Rightarrow\frac{2019^{2020}+1}{2019^{2021}+1}< \frac{2018^{2019}+1}{2019^{2019}+1}\)

\(\Rightarrow A< B\)

Ta có:

\(A=\frac{2019^{2020}+1}{2019^{2021}+1}\)

\(\Rightarrow2019A=\frac{2019^{2021}+2019}{2019^{2021}+1}\)

\(\Rightarrow2019A=1+\frac{2019}{2019^{2021}+1}\)

\(\Rightarrow A=1+\frac{2019}{2019^{2021}+1}:2019\)

Ta lại có:

\(B=\frac{2019^{2018}+1}{2019^{2019}+1}\)

\(\Rightarrow2019B=\frac{2019^{2019}+2019}{2019^{2019}+1}\)

\(\Rightarrow2019B=1+\frac{2019}{2019^{2019}+1}\)

\(\Rightarrow B=1+\frac{2019}{2019^{2019}+1}:2019\)

Do \(2019^{2021}+1>2019^{2019}+1\)

\(\Rightarrow\frac{2019}{2019^{2021}+1}< \frac{2019}{2019^{2019}+1}\)

\(\Rightarrow1+\frac{2019}{2019^{2021}+1}:2019< 1+\frac{2019}{2019^{2019}+1}:2019\)

\(\Rightarrow A< B\)

Vậy \(A< B.\)