![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề yêu cầu gì thế em?
Tính tổng hay tìm chữ số tận cùng của tổng em nhỉ?
![](https://rs.olm.vn/images/avt/0.png?1311)
3703703703703703703703703703703703703703703703703703703703703703703703703703703703703703703703703670
la kq cua mk
![](https://rs.olm.vn/images/avt/0.png?1311)
1. a. \(3^{2010}=\left(3^2\right)^{1005}=9^{1005}\)
Vì \(9^{1005}< 10^{1005}\)
nên \(3^{2010}< 10^{1005}\)
b. Ta có :
\(3^{2010}=3.3.3.3....3\)( 2010 chữ số 3 )
\(\Rightarrow3^{2010}=\left(3.3\right)\left(3.3\right)\left(3.3\right)...\left(3.3\right)=9.9.9.9...9\)( 1005 chữ số 9 )
Xét \(9.9.9...9.9< 9.10.10.10...10=90000...00\) ( 1004 chữ số 0 và 1 chữ số 9 ). Nghĩa là có 1005 chữ số
Vậy \(3^{2010}\) có ít hơn 1006 chữ số
1.a)Ta có 32010 = (32)1005 = 91005 < 101005
=> 32010 < 101005
b) Vì 32010 < 101005 (cmt)
mà 101005 là số có 1005 chữ số
=> 32010 là số có ít hơn 1006 chữ số
2. a) Ta có 333444 = (3.111)444 = 3444.111444 = (34)111 . 111444 = 81111.111444 > 8111. 111444
=> 333444 > 8111. 111444
b) Ta có 333444 (3.111)444 = 3444.111444 = (34)111.111444 = 81111.111444 (1)
Lại có 444333 = (4.111)333 = 4333.111333 = (43)111.111333 = 64111.111333 (2)
Từ (1)(2) => 333444 > 444333
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(333^{444}=\left(111.3\right)^{111.4}=\left(111^4.3^4\right)^{111}=\left(111^4.81\right)^{111}\)
\(444^{333}=\left(111.4\right)^{111.3}=\left(111^3.4^3\right)^{111}=\left(111^3.64\right)^{111}\)
Vì \(111^4.81>111^3.64\)
\(\Rightarrow333^{444}>444^{333}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
555 ^ 2 ≡ 5 (mod 10)
555 ^3≡5 (mod 10)
555^5=555^2.555^3≡5.5≡5 (mod 10)
~~> 555^777≡5 (mod 10)
Suy ra
333^555^777đồng dư với 333^5
Do 333^5=333^2.333^3≡3 (mod10)
Vậy chữ số tận của 333^555^777 là 3 . (1)
Làm tương tự ta được 777^555^333 có chữ số tận cùng là 7 (2)
(1) và (2) Suy ra 333^555^777 +777^555^333 có chữ số tận cùng là 0
Vậy 333^555^777 +777^555^333 chia hết cho 10.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(555\equiv-1\left(\text{mod 4}\right)\Rightarrow555^{777}\equiv\left(-1\right)^{777}\left(\text{mod 4}\right)\equiv\left(-1\right)\left(\text{mod 4}\right)\)
\(\Rightarrow\text{555^777 chia 4 dư 3. }\)
\(555^{333}\equiv\left(-1\right)^{333}\left(\text{mod 4}\right)\equiv\left(-1\right)\left(\text{mod 4}\right)\)
\(\Rightarrow\text{555^333 chia 4 dư 3}\)
\(\text{Đến đây dễ rồi -__-}\)
Ta có:
5552≡5 (mod 10)
5553≡5( mod 10)
5555=5552.5553≡5.5≡5(mod 10)
---> 555777≡5(mod 10)
Suy ra:
333555777đồng dư với 3335
Do 3335=3332.3333≡3(mod 10)
Vậy chữ số tận cùng của 333555777là 3 (1)
Làm tương tự với 777555333có chữ số tận cùng là 7 (2)
Từ (1) và (2) suy ra 333555777+777555333có chữ số tận cùng là 0
Vậy 333555777+777555333chia hết cho 10 (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Từ ac = b2 (1) => abc = b3
ab = c2 => abc = c3
=> b3 = c3 => b = c thay vào (1)
=> ab = b2 <=> (a - b).b = 0 <=> \(\orbr{\begin{cases}a=b\\b=0\left(loại\right)\end{cases}}\)
=> a = b = c
Khi đó: P = \(\frac{a^{555}}{a^{222}.a^{333}}+\frac{b^{555}}{b^{222}.b^{333}}+\frac{c^{555}}{c^{222}.c^{333}}=1+1+1=3\)