\(C=1+3+3^2+3^3+...+3^{19}+3^{20}\)

\(D=5+5^2+...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2019

\(C=1+3+3^2+3^3+...+3^{19}+3^{20}\)

\(3.C=3+3^2+3^3+3^4+...+3^{20}+3^{21}\)

\(3.C-C=3^{21}-1\)

\(\Rightarrow C=\frac{3^{21}-1}{2}\)

\(D=\)\(5+5^2+5^3+...+5^{99}+5^{100}\)

\(5.D=5^2+5^3+5^4+...+5^{100}+5^{101}\)

\(5.D-D=5^{101}-5\)

\(\Rightarrow D=\frac{5^{101}-5}{4}\)

19 tháng 8 2019

\(C=1+3+3^2+...+3^{20}\)

\(3C=3+3^2+3^3+...+3^{21}\)

\(3C-C=\left(3+3^2+3^3+...+3^{21}\right)-\left(1+3+3^2+...+3^{20}\right)\)

\(2C=\left(3-3\right)+\left(3^2-3^2\right)+\left(3^3-3^3\right)+...+\left(3^{20}-3^{20}\right)+3^{21}-1\)

\(2C=3^{21}-1\)

\(C=\frac{3^{21}-1}{2}\)

\(D=5+5^2+5^3+...+5^{100}\)

\(5D=5^2+5^3+5^4+...+5^{101}\)

\(5D-D=\left(5^2+5^3+5^4+...+5^{101}\right)-\left(5+5^2+5^3+...+5^{100}\right)\)

\(4D=\left(5^2-5^2\right)+\left(5^3-5^3\right)+\left(5^4-5^4\right)+...+\left(5^{100}-5^{100}\right)+5^{101}-5\)

\(4D=5^{101}-5\)

\(D=\frac{5\left(5^{100}-1\right)}{4}=\frac{5}{4}\left(5^{100}-1\right)\)

19 tháng 5 2017

a)

\(A=1+5+5^2+5^3+................+5^{99}\)

\(\Rightarrow5A=5+5^2+5^3+................+5^{99}+5^{100}\)

\(\Rightarrow5A-A=\left(5+5^2+5^3+.........+5^{99}+5^{100}\right)-\left(1+5+5^2+.......+5^{99}\right)\)

\(\Rightarrow4A=5^{100}-1\)

\(\Rightarrow A=\dfrac{5^{100}-1}{4}\)

Ta có :

\(A=\dfrac{5^{100}-1}{4}< B=\dfrac{5^{100}}{4}\Rightarrow A< B\)

b) Chưa có nghĩ ra!!

19 tháng 5 2017

a, \(A=1+5+5^2+...+5^{100}\\ =>5A=5+5^2+5^3+...........+5^{101}\\ =>5A-A=\left(5+5^2+5^3+......+5^{101}\right)-\left(1+5+5^2+...5^{100}\right)\\ 4A=5^{101}-1\\ =>A=\dfrac{5^{101}-1}{4}->\left(1\right)\)

Theo đề: \(B=\dfrac{5^{101}}{4}->\left(2\right)\)

Từ (1) và (2), ta thấy: \(\dfrac{5^{101}-1}{4}< \dfrac{5^{101}}{4}\\ =>A< B\)

14 tháng 10 2017

1-2+2^2 các bạn nha

7 tháng 7 2019

a, \(B=\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+90}{19^{32}+5+90}=\frac{19^{31}+95}{19^{32}+95}=\frac{19\left(19^{30}+5\right)}{19\left(19^{31}+5\right)}=\frac{19^{30}+5}{19^{31}+5}=A\)

b, Ta có: \(\frac{1}{A}=\frac{2^{20}-3}{2^{18}-3}=\frac{2^2.\left(2^{18}-3\right)+9}{2^{18}-3}=4+\frac{9}{2^{18}-3}\)

\(\frac{1}{B}=\frac{2^{22}-3}{2^{20}-3}=\frac{2^2\left(2^{20}-3\right)+9}{2^{20}-3}=4+\frac{9}{2^{20}-3}\)

Vì \(\frac{9}{2^{18}-3}>\frac{9}{2^{20}-3}\)\(\Rightarrow\frac{1}{A}>\frac{1}{B}\Rightarrow A< B\)

c,  Câu hỏi của truong nguyen kim 

bài làm 

C=1+3+32+.............+3100

C=3C−C2 

3C=3+32+33+.............+399+3100+3101

C=1+3+32+..................+399+3100

3C-C=(3+32+33+.............+399+3100+3101)-(1+3+32+..................+399+3100

Triệt tiêu các số hạng co giá trị tuyệt đối  bằng nhau, ta được:

2C=-1+3100

⇒C=3100−12 

D=2/D+D/3 

2D=2101-2100+299-298+..............+23-22

D=2100-299+298-297+............+22-2

2D+D=2101-2100+299-298+..............+23-22+2100-299+298-297+............+22-2

Triệt tiêu các số hạng có giá trị tuyệt đối  bằng nhau, ta được:

3D=2101-2

⇒D=2101−23 

B=31×4 +54×9 +79×16 +.........+1981×100 

Quan sát biểu thức, ta có nhận xét:

4-1=3;

9-4=5;

16-9=7;

.......;100-81=19

=> Hiệu hai số ở mẫu bằng giá trị ở tử

⇒B=1−14 +14 −19 +19 −116 +.......+181 −1100 

⇒B=1−1/100 

B=99/100 <100/100 

Vậy B<1

 đặt A = (cái trên )

2A=1+2^2+...+2^101

-

A=1+2+....+2^100

------------------------------

A= 2^101 - 1 

B = 5+5^2+......+5^99

5B=5^2+5^3+....+5^100

-

B = 5+5^2+......+5^99

-----------------------------------

4B= 5^100-5

B=(5^100 - 5)/4

học tốt nha

tổng quát cho bạn luôn

A=n+n^2 + ....+ n^n

nA= n^2 + n^3 +....+n^(n+1)

A=n+n^2 + ....+ n^n

------------------------------------------

(n-1)A = n^(n+1) - n

A= (n^(n+1) - n) / (n-1)

ok

tuy nhiên một vài trường hợp(như câu B) thôi nha còn lại cũng na ná như thế

A=13+57+...+20012003+2005S=1−3+5−7+...+2001−2003+2005

=(13)+(57)+...+(20012003)+2005=(1−3)+(5−7)+...+(2001−2003)+2005(Có 1002 cặp)

=(2).1002+2005=(−2).1002+2005

=2004+2005=−2004+2005

=1

13 tháng 7 2018

\(a,A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2017}}+\dfrac{1}{2^{2018}}\)

\(3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2016}}+\dfrac{1}{3^{2017}}\)

\(3A-A=1-\dfrac{1}{3^{2018}}\)

\(A=\dfrac{\left(1-\dfrac{1}{3^{2018}}\right)}{2}\)

\(b,B=1+5+5^2+5^3+...+5^{100}\)

\(5B=5+5^2+5^3+5^4+...+5^{100}+5^{101}\)

\(5B-B=1-5^{101}\)

\(B=\dfrac{\left(1-5^{101}\right)}{4}\)