Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(A=\dfrac{5^2}{11.16}+\dfrac{5^2}{16.21}+\dfrac{5^2}{21.26}+...+\dfrac{5^2}{56.61}\)
\(A=5^2.\left(\dfrac{1}{11.16}+\dfrac{1}{16.21}+\dfrac{1}{21.26}+...+\dfrac{1}{56.61}\right)\)
\(A=\left(5^2:5\right).\left(\dfrac{5}{11.16}+\dfrac{5}{16.21}+\dfrac{5}{21.26}+...+\dfrac{5}{56.61}\right)\)
\(A=5.\left(\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{26}+...+\dfrac{1}{56}-\dfrac{1}{61}\right)\)
\(A=5.\left(\dfrac{1}{11}-\dfrac{1}{61}\right)\)
\(A=5.\dfrac{50}{671}\)
\(Á=\dfrac{250}{671}\)
b: \(=-2\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{2450}\right)\)
\(=-2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(=-2\cdot\dfrac{49}{50}=-\dfrac{49}{25}\)

a) \(P=\frac{1+2}{1^2.2^2}+\frac{2+3}{2^2.3^2}+...+\frac{9+10}{9^2.10^2}\)
\(P=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\) ( rút gọn số mũ nhé )
\(P=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{9}-\frac{1}{10}\)
\(P=1-\frac{1}{10}=\frac{10}{10}-\frac{1}{10}=\frac{9}{10}\)
Vì \(\frac{9}{10}< 1\Rightarrow P< 1\) (đpcm)
b) Chút nữa mình làm nhé ^^
b)
\(Q=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)
Ta so sánh giữa A và Q.
\(\frac{1}{1.2}>\frac{1}{3};\frac{1}{2.3}>\frac{1}{3^2};\frac{1}{3.4}>\frac{1}{3^3};....;\frac{1}{100.101}>\frac{1}{3^{100}}\)
\(\Rightarrow Q< A\)
Ta lại tiếp tục so sánh A và \(\frac{1}{2}\)
Ta có :
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\Leftrightarrow A< \frac{1}{2}\)
Ta được:
\(Q< A< \frac{1}{2}\Leftrightarrow Q< \frac{1}{2}\)

Ta có :\(\dfrac{x}{y+z}=\dfrac{123-\left(y+z\right)}{y+z}\)
\(\dfrac{y}{x+z}=\dfrac{123-\left(x+z\right)}{x+z}\)
\(\dfrac{z}{y+x}=\dfrac{123-\left(y+x\right)}{y+x}\)
\(\Rightarrow P=\dfrac{123-\left(y+z\right)}{y+z}+\dfrac{123-\left(z+x\right)}{z+x}+\dfrac{123-\left(y+x\right)}{y+x}\)\(\Rightarrow P=123\left(\dfrac{1}{y+z}+\dfrac{1}{x+y}+\dfrac{1}{z+x}\right)-3\)
\(\Rightarrow P=123.\dfrac{1}{45}-3\)
\(\Rightarrow P=-\dfrac{4}{15}\)

\(a)\dfrac{-5}{21}-\dfrac{1}{3}+3\dfrac{1}{2}.\left(\dfrac{-2}{3}\right)^3\)
\(=\dfrac{-5}{21}+\dfrac{-7}{21}+\dfrac{7}{2}.\dfrac{-8}{27}\)
\(=-\dfrac{4}{7}+\dfrac{-28}{27}\)
\(=\dfrac{-108}{189}+\dfrac{-196}{189}\)
\(=-\dfrac{304}{189}\)
\(b)-2\dfrac{1}{3}+\left(\dfrac{3}{8}-\dfrac{3}{4}\right)^3:\dfrac{5}{9}-\dfrac{1}{2}\)
\(=-\dfrac{7}{3}+\left(\dfrac{3}{8}-\dfrac{6}{8}\right)^3.\dfrac{9}{5}-\dfrac{1}{2}\)
\(=-\dfrac{7}{3}+\left(-\dfrac{3}{8}\right)^3.\dfrac{9}{5}-\dfrac{1}{2}\)
\(=-\dfrac{7}{3}+\dfrac{-27}{512}.\dfrac{9}{5}-\dfrac{1}{2}\)
\(=-\dfrac{7}{3}+\dfrac{-243}{2560}-\dfrac{1}{2}\)
\(=\dfrac{-17920}{7680}+\dfrac{-729}{7680}+\dfrac{-3840}{7680}\)
\(=\dfrac{-22489}{7680}\)

\(-1-\dfrac{1}{3}-\dfrac{1}{6}-...-\dfrac{1}{1225}\)
\(=\dfrac{-1}{2}\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{2450}\right)\)
\(=\dfrac{-1}{2}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)\)
\(=\dfrac{-1}{2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(=\dfrac{-1}{2}\left(1-\dfrac{1}{50}\right)\)
\(=\dfrac{-1}{2}.\dfrac{49}{50}=\dfrac{-49}{100}\)
Vậy...

a, \(\dfrac{3}{5}-4.\left|\dfrac{1}{5}-\dfrac{3}{4}x\right|=\dfrac{1}{3}\)
\(\Rightarrow4\left|\dfrac{1}{5}-\dfrac{3}{4}x\right|=\dfrac{4}{15}\)
\(\Rightarrow\left|\dfrac{1}{5}-\dfrac{3}{4}x\right|=\dfrac{1}{15}\)
\(\Rightarrow\dfrac{1}{5}-\dfrac{3}{4}x\in\left\{-\dfrac{1}{15};\dfrac{1}{15}\right\}\)
\(\Rightarrow\dfrac{3}{4}x\in\left\{\dfrac{4}{15};\dfrac{2}{15}\right\}\Rightarrow x\in\left\{\dfrac{16}{45};\dfrac{8}{45}\right\}\)
b, \(\left|2\dfrac{2}{9}-x\right|=\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\)
\(\Rightarrow\left|2\dfrac{2}{9}-x\right|=\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}\)
\(\Rightarrow\left|2\dfrac{2}{9}-x\right|=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+....+\dfrac{1}{8}-\dfrac{1}{9}\)
(do \(\dfrac{1}{a.\left(a+1\right)}=\dfrac{1}{a}-\dfrac{1}{a+1}\) với mọi \(a\in N\)*)
\(\Rightarrow\left|2\dfrac{2}{9}-x\right|=\dfrac{1}{3}-\dfrac{1}{9}\)
\(\Rightarrow\left|2\dfrac{2}{9}-x\right|=\dfrac{2}{9}\Rightarrow2\dfrac{2}{9}-x\in\left\{-\dfrac{2}{9};\dfrac{2}{9}\right\}\)
\(\Rightarrow x\in\left\{\dfrac{22}{9};2\right\}\)
c,\(\dfrac{1}{3}x+\dfrac{2}{5}\left(x-1\right)=0\)
\(\Rightarrow\dfrac{1}{3}x+\dfrac{2}{5}x-\dfrac{2}{5}=0\)
\(\Rightarrow\dfrac{11}{15}x=\dfrac{2}{5}\Rightarrow x=\dfrac{6}{11}\)
d, \(60\%x+\dfrac{2}{3}x=\dfrac{1}{3}.6\dfrac{1}{3}\)
\(\Rightarrow\dfrac{3}{5}x+\dfrac{2}{3}x=\dfrac{1}{3}.\dfrac{19}{3}\)
\(\Rightarrow\dfrac{19}{15}x=\dfrac{19}{9}\Rightarrow x=\dfrac{5}{3}\)
Chúc bạn học tốt!!!
C = −(1+\(\dfrac{1}{3}+\dfrac{1}{6}\)+\(\dfrac{1}{10}+\dfrac{1}{15}\)+...+\(\dfrac{1}{1225}\))
\(\dfrac{1}{2}\)C =-\(\dfrac{1}{2}\)(1+\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{1225}\))
\(\dfrac{1}{2}C\) =-(\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{2450}\)
\(\dfrac{1}{2}\)C=-(\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{49.50}\)
\(\dfrac{1}{2}\)C=-(1-\(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}\)+....+\(\dfrac{1}{49}-\dfrac{1}{50}\))
\(\dfrac{1}{2}\)C=-(1-\(\dfrac{1}{50}\))
\(\dfrac{1}{2}\)C=-\(-\dfrac{49}{50}\)
C=\(-\dfrac{49}{50}:\dfrac{1}{2}=-\dfrac{49}{25}\)
Vậy C=-\(\dfrac{49}{25}\)
chúc bạn học tốt ạ