
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a)Đặt \(A=2^{2016}+2^{2015}+...+2^1+2^0\)
\(2A=2\left(1+2+...+2^{2016}\right)\)
\(2A=2+2^2+...+2^{2017}\)
\(2A-A=\left(2+2^2+...+2^{2017}\right)-\left(1+2+...+2^{2016}\right)\)
\(A=2^{2017}-1\) thay vào ta có:
\(A=2^{2017}-\left(2^{2017}-1\right)=2^{2017}-2^{2017}+1=1\)
b)Ta thấy: \(\left|x\left(x-4\right)\right|\ge0\Rightarrow VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge0\)
Ta có: \(x\left|x-4\right|=x\left(x\ge0\right)\)
- Nếu x=0 thì 0|0-4|=0 (đúng)
- Nếu x\(\ne\)0 thì ta có \(\left|x-4\right|=1\Leftrightarrow x-4=\pm1\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=5\\x=3\end{array}\right.\)
Vậy x=0;x=5;x=3 (thỏa mãn)
a) Đặt \(B=2^{2016}+2^{2015}+...+2^1+2^0\)
\(\Rightarrow B=1+2+...+2^{2015}+2^{2016}\)
\(\Rightarrow2B=2+2^2+...+2^{2016}+2^{2017}\)
\(\Rightarrow2B-B=\left(2+2^2+...+2^{2016}+2^{2017}\right)-\left(1+2+...+2^{2015}+2^{2016}\right)\)
\(\Rightarrow B=2^{2017}-1\)
Mà \(A=2^{2017}-B\)
\(\Rightarrow A=2^{2017}-\left(2^{2017}-1\right)\)
\(\Rightarrow A=1\)
Vậy A = 1

A= 22016-( 22015+22014+...+21+20)
Đặt B=22015+22014+...+21+20
Ta có: 2.B= 2.(22015+22014+...+21+20)
hay 2B= 22016+22015+...+22+21
2B-B=(22016+22015+...+22+21)-(22015+22014+...+21+20)
=22016-1
Do đó A=22016-(22016-1)=22016-22016+1=1
Vậy A=1

\(B=2^{2015}+2^{2014}+...+2^1+1\)
\(\Leftrightarrow2B=2^{2016}+2^{2015}+...+2^2+2\)
\(\Leftrightarrow B=2^{2016}-1\)
\(A=2^{2016}-B=1\)

\(\left|3x-1\right|^{2015}+\left(2x-y\right)^{2016}\le0\)
\(\left\{{}\begin{matrix}\left|3x-1\right|\ge0\Rightarrow\left|3x-1\right|^{2015}\ge0\forall x\\\left(2x-y\right)^{2016}\ge0\forall x;y\end{matrix}\right.\)
\(\Rightarrow\left|3x-1\right|^{2015}+\left(2x-y\right)^{2016}\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left|3x-1\right|^{2015}+\left(2x-y\right)^{2016}\ge0\\\left|3x-1\right|^{2015}+\left(2x-y\right)^{2016}\le0\end{matrix}\right.\)
\(\Rightarrow\left|3x-1\right|^{2015}+\left(2x-y\right)^{2016}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x-1\right|^{2015}=0\Rightarrow3x=1\Rightarrow x=\dfrac{1}{3}\\\left(2x-y\right)^{2016}=0\Rightarrow2x=y\Rightarrow x=\dfrac{1}{2}y\Rightarrow y=\dfrac{1}{6}\end{matrix}\right.\)
\(\Rightarrow A=-2\dfrac{1}{3}^2-\dfrac{1}{3}.\dfrac{1}{6}+\dfrac{1}{6}^2+2016\)
\(A=-2.\dfrac{1}{9}-\dfrac{1}{18}+\dfrac{1}{36}+2016\)
\(A=\dfrac{-8}{36}-\dfrac{2}{36}+\dfrac{1}{36}+2016\)
\(A+-\dfrac{1}{4}+2016\)

Ta có:
\(\left(2015^{2015}+2016^{2015}\right)^{2016}=\left(2015^{2015}+2016^{2015}\right)^{2015}.\left(2015^{2015}+2016^{2015}\right)\)
\(>\left(2015^{2015}+2016^{2015}\right)^{2015}.2016^{2015}=\left[\left(2015^{2015}+2016^{2015}\right)2016\right]^{2015}\)
\(>\left(2015^{2015}.2015+2016^{2015}.2016\right)^{2015}=\left(2015^{2016}+2016^{2016}\right)^{2015}\)
Vậy \(\left(2015^{2015}+2016^{2015}\right)^{2016}>\left(2015^{2016}+2016^{2016}\right)^{2015}\)
1. Ta sẽ chứng minh \(2015^{2016}>2016^{2015}\)
\(\Leftrightarrow2016^{2015}-2015^{2016}< 0\Leftrightarrow2016^{2016}-2016.2015^{2016}< 0\)
\(\Leftrightarrow2016.2016^{2016}-2015.2016^{2016}-2016.2015^{2016}< 0\)
\(\Leftrightarrow2016\left(2016^{2016}-2015^{2016}\right)< 2015.2016^{2016}\)
\(\Leftrightarrow2016\left(2016^{2015}+2016^{2014}.2015+...+2015^{2015}\right)< 2015.2016^{2016}\)
\(\Leftrightarrow2016^{2015}.2015+...+2016.2015^{2015}< 2014.2016^{2016}\)
\(\Leftrightarrow2016^{2014}.2015+2016^{2013}.2015^2+...+2015^{2015}< 2014.2016^{2015}\)
\(\Leftrightarrow2015^{2015}< \left(2016^{2015}-2015.2016^{2014}\right)+\left(2016^{2015}-2015^2.2016^{2013}\right)\)
\(+...+\left(2016^{2015}-2015^{2014}.2016\right)\)
\(\Leftrightarrow2015^{2015}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)
Lại có \(2015^{2015}=2014.2015^{2014}+2015^{2014}< 2014.2016^{2014}+2015^{2014}\)
Mà \(2015^{2014}< 2013.2016^{2014}.2015\)
nên \(2015^{2014}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)
Vậy \(2015^{2016}>2016^{2015}.\)

2 ^ 0 = 1
A = 1 + 2 + 2 ^ 2 + ... + 2 ^ 2015
A x 2 = ( 1 + 2 + 2 ^ 2 + .., + 2 ^ 2015 ) x 2
A x 2 = 2 + 2^ 2 + 2 ^ 3 + ... + 2 ^ 2016
A x 2 = ( 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 2015 ) + 2 ^ 2016 - 1
A x 2 = A + 2 ^ 2016 - 1
A = 2 ^ 2016 - 1 ( cung bớt các 2 về đi A )
=> 2 ^ 2016 hơn 2 ^ 2016 - 1 một đơn vị
=> 2 ^ 2016 và 2 ^ 2016 - 1 là 2 số nguyên liên tiếp
Hay A và B là 2 số nguyên liên tiếp
A= 2^0+2^1+2^2+......+2^2015
A=2^2015-1 mà B= 2^2016
A và B là 2 số nguyên liên tiếp



\(A=2^{2016}-2^{2015}-..........-2-1\)
\(\Leftrightarrow A=2^{2016}-\left(2^{2015}+2^{2014}+.........+2+1\right)\)
Đặt : \(H=2^{2015}+2^{2014}+......+2+1\) \(\Leftrightarrow A=2^{2016}-H\)
\(\Leftrightarrow2H=2^{2016}+2^{2015}+..........+2^2+2\)
\(\Leftrightarrow2H-H=\left(2^{2016}+2^{2015}+.......+2\right)-\left(2^{2015}+2^{2014}+......+1\right)\)
\(\Leftrightarrow H=2^{2016}-1\)
\(\Leftrightarrow A=2^{2016}-\left(2^{2016}-1\right)\)
\(\Leftrightarrow A=2^{2016}-2^{2016}+1\)
\(\Leftrightarrow A=1\)