Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\frac{0,8:\left(\frac{4}{5}\cdot1,25\right)}{0,64-\frac{1}{25}}+\frac{\left(1,08-\frac{2}{25}\right):\frac{4}{7}}{\left(6\frac{5}{9}-3\frac{1}{4}\right)\cdot2\frac{2}{17}}+\frac{\left(1,2\cdot0,5\right)}{\frac{4}{5}}\)
\(=\frac{\frac{4}{5}:\left(\frac{4}{5}\cdot\frac{5}{4}\right)}{\frac{16}{25}-\frac{1}{25}}+\frac{\left(\frac{27}{25}-\frac{2}{25}\right)\cdot\frac{7}{4}}{\left(\frac{59}{9}-\frac{13}{4}\right)\cdot\frac{36}{17}}+\frac{6}{5}\cdot\frac{1}{2}\cdot\frac{5}{4}\)
\(=\frac{\frac{4}{5}}{\frac{3}{5}}+\frac{\frac{7}{4}}{\frac{119}{36}\cdot\frac{36}{17}}+\frac{3}{4}\)
\(=\frac{4}{5}\cdot\frac{5}{3}+\frac{7}{4}\cdot\frac{1}{7}+\frac{3}{4}=\frac{4}{3}+\frac{1}{4}+\frac{3}{4}=\frac{7}{3}\)

\(E=\frac{0,8:\left(\frac{4}{5}.1,25\right)}{0,64-\frac{1}{25}}+\frac{\left(1,08-\frac{2}{25}\right):\frac{4}{7}}{\left(6\frac{5}{9}-3\frac{1}{4}\right).2\frac{2}{17}}+\left(1,2.0,5\right):\frac{4}{5}\)
\(E=\frac{\frac{4}{5}:\frac{4}{5}:1,25}{\frac{16}{25}-\frac{1}{25}}+\frac{\left(\frac{27}{25}-\frac{2}{25}\right).\frac{7}{4}}{\left(\frac{59}{9}-\frac{13}{4}\right).\frac{36}{17}}+\frac{6}{5}.\frac{1}{2}.\frac{5}{4}\)
\(E=\frac{1:\frac{5}{4}}{\frac{3}{5}}+\frac{1.\frac{7}{4}}{\frac{119}{36}.\frac{36}{17}}+\frac{3}{4}\)
\(E=\frac{4}{5}.\frac{5}{3}+\frac{\frac{7}{4}}{7}+\frac{3}{4}\)
\(E=\frac{4}{3}+\frac{7}{4}.\frac{1}{7}+\frac{3}{4}\)
\(E=\frac{4}{3}+\frac{1}{4}+\frac{3}{4}\)
\(E=\frac{4}{3}+1=\frac{7}{3}\)

Bấm máy tính:
E = \(\frac{4}{3}+\frac{1}{4}+\frac{3}{5}:\frac{4}{5}\)
E = \(\frac{4}{3}+\frac{1}{4}+\frac{3}{4}\)
E = \(\frac{7}{3}\)
Vậy E = \(\frac{7}{3}\)

Bài 1:
A = \(\frac15\) + \(\frac{3}{17}\) - \(\frac43\) + (\(\frac45\) - \(\frac{3}{17}\) + \(\frac13\)) - \(\frac17\) + (- \(\frac{14}{30}\))
A = \(\frac15\) + \(\frac{3}{17}\) - \(\frac43\) + \(\frac45\) - \(\frac{3}{17}\) + \(\frac13\) - \(\frac17\) - \(\frac{14}{30}\)
A = (\(\frac15\) + \(\frac45\)) + (\(\frac{3}{17}\) - \(\frac{3}{17}\)) - (\(\frac43-\frac13\)) - \(\frac{30}{210}\) - \(\frac{98}{210}\)
A = 1 + 0 - 1 - (\(\frac{30}{210}+\frac{98}{210}\))
A = 1 - 1 - \(\frac{228}{210}\)
A = 0 - \(\frac{128}{210}\)
A = - \(\frac{64}{105}\)
Bài 2:
B= (\(\frac58\) - \(\frac{4}{12}\) + \(\frac32\)) - (\(\frac58\) + \(\frac{9}{13}\)) - (\(\frac{-3}{2}\)) + \(\frac{7}{-15}\)
B = \(\frac58\) - \(\frac{4}{12}\) + \(\frac32\) - \(\frac58\) - \(\frac{9}{13}\) + \(\frac32\) - \(\frac{7}{15}\)
B = (\(\frac58\) - \(\frac58\)) + (\(\frac32\) + \(\frac32\)) - (\(\frac13\) + \(\frac{9}{13}\) + \(\frac{7}{15}\))
B = 0 + 3 - (\(\frac{65}{195}\) + \(\frac{135}{195}\) + \(\frac{91}{195}\))
B = 3 - (\(\frac{200}{195}\) + \(\frac{91}{195}\))
B = 3 - \(\frac{97}{65}\)
B = \(\frac{195}{65}\) - \(\frac{97}{65}\)
B = \(\frac{98}{65}\)
\(a,A=\left[\frac{4}{11}.\left(\frac{1}{25}\right)^0+\frac{7}{22}.2\right]^{2010}-\left(\frac{1}{2^2}:\frac{8^2}{4^4}\right)^{2009}\)
\(A=\left(\frac{4}{11}.1+\frac{7}{11}\right)^{2010}-\left(\frac{1}{2^2}.2^2\right)^{2009}\)
\(A=1-1=0\)
\(b,B=\frac{0,8:\left(\frac{4}{5}.1,25\right)}{0,64-\frac{1}{25}}+\frac{\left(1,08-\frac{2}{25}\right):\frac{4}{7}}{\left(6\frac{5}{9}-3\frac{1}{4}\right).2\frac{2}{17}}+\left(1,2.0,5\right):\frac{4}{5}\)
\(B=\frac{0,8:1}{\frac{3}{5}}+\frac{\left(1\right):\frac{4}{7}}{\left(\frac{59}{9}-\frac{13}{4}\right).36}\)
\(B=0,8.\frac{5}{3}+\frac{\frac{7}{4}}{\frac{119}{36}.36}\)
\(B=\frac{4}{3}+\frac{7}{4}.\frac{1}{119}\)
\(B=\frac{4}{3}+\frac{1}{68}=\frac{275}{204}\)