
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(\left(\right. x + y \left.\right)^{3} - \left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right) = 3 x y \left(\right. x + y \left.\right)\)
Giải:
Bắt đầu với vế trái của phương trình:
\(\left(\right. x + y \left.\right)^{3} - \left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right)\)
Bước 1: Mở rộng \(\left(\right. x + y \left.\right)^{3}\):
\(\left(\right. x + y \left.\right)^{3} = x^{3} + 3 x^{2} y + 3 x y^{2} + y^{3}\)
Bước 2: Mở rộng \(\left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right)\):
\(\left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right) = x \left(\right. x^{2} - x y + y^{2} \left.\right) + y \left(\right. x^{2} - x y + y^{2} \left.\right)\)\(= x^{3} - x^{2} y + x y^{2} + y x^{2} - x y^{2} + y^{3}\)\(= x^{3} + y^{3} + \left(\right. y x^{2} - x^{2} y \left.\right) = x^{3} + y^{3}\)
Bước 3: Trừ các biểu thức:
\(\left(\right. x + y \left.\right)^{3} - \left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right) = \left(\right. x^{3} + 3 x^{2} y + 3 x y^{2} + y^{3} \left.\right) - \left(\right. x^{3} + y^{3} \left.\right)\)\(= 3 x^{2} y + 3 x y^{2}\)\(= 3 x y \left(\right. x + y \left.\right)\)
Vậy, phương trình đã đúng:
\(\left(\right. x + y \left.\right)^{3} - \left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right) = 3 x y \left(\right. x + y \left.\right)\)
b) \(B = \left(\right. 3 x + 2 \left.\right) \left(\right. 9 x^{2} - 6 x + 4 \left.\right) - 3 \left(\right. 9 x^{3} - 2 \left.\right)\)
Giải:
Bước 1: Mở rộng \(\left(\right. 3 x + 2 \left.\right) \left(\right. 9 x^{2} - 6 x + 4 \left.\right)\):
\(\left(\right. 3 x + 2 \left.\right) \left(\right. 9 x^{2} - 6 x + 4 \left.\right) = 3 x \left(\right. 9 x^{2} - 6 x + 4 \left.\right) + 2 \left(\right. 9 x^{2} - 6 x + 4 \left.\right)\)\(= 27 x^{3} - 18 x^{2} + 12 x + 18 x^{2} - 12 x + 8\)\(= 27 x^{3} + 8\)
Bước 2: Mở rộng \(3 \left(\right. 9 x^{3} - 2 \left.\right)\):
\(3 \left(\right. 9 x^{3} - 2 \left.\right) = 27 x^{3} - 6\)
Bước 3: Trừ hai biểu thức:
\(B = \left(\right. 27 x^{3} + 8 \left.\right) - \left(\right. 27 x^{3} - 6 \left.\right) = 8 + 6 = 14\)
Vậy, \(B = 14\).
c) \(C = \left(\right. x - 2 \left.\right) \left(\right. x^{2} - 2 x + 4 \left.\right) - \left(\right. x^{3} - 7 \left.\right)\)
Giải:
Bước 1: Mở rộng \(\left(\right. x - 2 \left.\right) \left(\right. x^{2} - 2 x + 4 \left.\right)\):
\(\left(\right. x - 2 \left.\right) \left(\right. x^{2} - 2 x + 4 \left.\right) = x \left(\right. x^{2} - 2 x + 4 \left.\right) - 2 \left(\right. x^{2} - 2 x + 4 \left.\right)\)\(= x^{3} - 2 x^{2} + 4 x - 2 x^{2} + 4 x - 8\)\(= x^{3} - 4 x^{2} + 8 x - 8\)
Bước 2: Trừ biểu thức \(x^{3} - 7\):
\(C = \left(\right. x^{3} - 4 x^{2} + 8 x - 8 \left.\right) - \left(\right. x^{3} - 7 \left.\right)\)\(C = x^{3} - 4 x^{2} + 8 x - 8 - x^{3} + 7\)\(C = - 4 x^{2} + 8 x - 1\)
Vậy, \(C = - 4 x^{2} + 8 x - 1\).
d) \(D = \left(\right. x + 1 \left.\right)^{3} - \left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right) - 3 x \left(\right. x + 1 \left.\right)\)
Giải:
Bước 1: Mở rộng \(\left(\right. x + 1 \left.\right)^{3}\):
\(\left(\right. x + 1 \left.\right)^{3} = x^{3} + 3 x^{2} + 3 x + 1\)
Bước 2: Mở rộng \(\left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right)\):
\(\left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right) = x \left(\right. x^{2} + x + 1 \left.\right) - 1 \left(\right. x^{2} + x + 1 \left.\right)\)\(= x^{3} + x^{2} + x - x^{2} - x - 1\)\(= x^{3} - 1\)
Bước 3: Mở rộng \(3 x \left(\right. x + 1 \left.\right)\):
\(3 x \left(\right. x + 1 \left.\right) = 3 x^{2} + 3 x\)
Bước 4: Trừ các biểu thức:
\(D = \left(\right. x^{3} + 3 x^{2} + 3 x + 1 \left.\right) - \left(\right. x^{3} - 1 \left.\right) - \left(\right. 3 x^{2} + 3 x \left.\right)\)\(D = x^{3} + 3 x^{2} + 3 x + 1 - x^{3} + 1 - 3 x^{2} - 3 x\)\(D = 2\)
Vậy, \(D = 2\).
e) \(E = 3 \left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right) + x \left(\right. x + 1 \left.\right) - x \left(\right. x^{2} + x + 1 \left.\right)\)
Giải:
Bước 1: Mở rộng \(3 \left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right)\):
\(3 \left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right) = 3 \left(\right. x \left(\right. x^{2} + x + 1 \left.\right) - \left(\right. x^{2} + x + 1 \left.\right) \left.\right)\)\(= 3 \left(\right. x^{3} + x^{2} + x - x^{2} - x - 1 \left.\right) = 3 \left(\right. x^{3} - 1 \left.\right)\)\(= 3 x^{3} - 3\)
Bước 2: Mở rộng \(x \left(\right. x + 1 \left.\right)\):
\(x \left(\right. x + 1 \left.\right) = x^{2} + x\)
Bước 3: Mở rộng \(x \left(\right. x^{2} + x + 1 \left.\right)\):
\(x \left(\right. x^{2} + x + 1 \left.\right) = x^{3} + x^{2} + x\)
Bước 4: Trừ các biểu thức:
\(E = \left(\right. 3 x^{3} - 3 \left.\right) + \left(\right. x^{2} + x \left.\right) - \left(\right. x^{3} + x^{2} + x \left.\right)\)\(E = 3 x^{3} - 3 + x^{2} + x - x^{3} - x^{2} - x\)\(E = 2 x^{3} - 3\)
Vậy, \(E = 2 x^{3} - 3\).
g) \(9 x \left(\right. x + 1 \left.\right)^{3} + \left(\right. x - 1 \left.\right)^{3} = 2 x^{3}\)
Giải:
Mở rộng biểu thức và kiểm tra tính đúng đắn:
\(9 x \left(\right. x + 1 \left.\right)^{3} = 9 x \left(\right. x^{3} + 3 x^{2} + 3 x + 1 \left.\right) = 9 x^{4} + 27 x^{3} + 27 x^{2} + 9 x\)\(\left(\right. x - 1 \left.\right)^{3} = x^{3} - 3 x^{2} + 3 x - 1\)
Cộng cả hai biểu thức:
\(9 x \left(\right. x + 1 \left.\right)^{3} + \left(\right. x - 1 \left.\right)^{3} = 9 x^{4} + 27 x^{3} + 27 x^{2} + 9 x + x^{3} - 3 x^{2} + 3 x - 1\)\(= 9 x^{4} + 28 x^{3} + 24 x^{2} + 12 x - 1\)
So với \(2 x^{3}\), ta thấy biểu thức không đúng. Có thể bài toán có lỗi. Nếu có sự nhầm lẫn, bạn có thể điều chỉnh lại nhé!
h) \(\left(\right. x + 3 \left.\right) \left(\right. x^{2} - 3 x + 9 \left.\right) = x \left(\right. x^{2} - 3 x + 9 \left.\right) = x \left(\right. x^{2} + 4 \left.\right) - 1\)

\(P=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)-4x^2=\left(x-y-x-y\right)^2-\left(2x\right)^2=\left(-2y\right)^2-\left(2x\right)^2\)
\(=\left(2y-2x\right)\left(2y+2x\right)=2\left(y-x\right)2\left(y+x\right)=4\left(x+y\right)\left(y-x\right)\)
\(x^3-x^2y+3x-3y=x^2\left(x-y\right)+3\left(x-y\right)=\left(x-y\right)\left(x^2+3\right)\)
\(x^3-2x^2-4xy^2+x=x\left(x^2-2x+1-4y^2\right)=x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=x\left(x+2y-1\right)\left(x-2y-1\right)\)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)
Đặt \(x^2+7x+10=t\), ta có:
\(t\left(t+2\right)-8=t^2+2t-8=t^2-2t+4t-8=t\left(t-2\right)+4\left(t-2\right)=\left(t-2\right)\left(t+4\right)\)
\(=\left(x^2+7x+10+4\right)\left(x^2+7x+10-2\right)=\left(x^2+7x+14\right)\left(x^2+7x-8\right)\)

1,Thực hiện phép tính :
a, (x + 2)9 : (x + 2)6
=(x+2)9-6
=(x+2)3
b, (x - y) 4 : (x - 2)3
=(x-y)4-3
=x-y
c, ( x2+ 2x + 4)5 : (x2 + 2x + 4)
=(x2+2x+4)5-1
=(x2+2x+4)4
d, 2(x2 + 1)3 : 1/3(x2 + 1)
=(2÷1/3).[(x2+1)3÷(x2+1)]
=6(x2+1)2
e, 5 (x - y)5 : 5/6 (x - y)2
=(5÷5/6).[(x-y)5÷(x-y)2]
=6(x-y))3
Chọn đáp án D