
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a/ \(y'=4\left(2x-3\right)^3.\left(2x-3\right)'=8\left(2x-3\right)^3\)
b/ \(y'=5cos^43x.\left(cos3x\right)'=-15cos^43x.sin3x\)
c/ \(y'=\frac{\left[cos\left(1-2x^2\right)\right]'}{2\sqrt{cos\left(1-2x^2\right)}}=\frac{-sin\left(1-2x^2\right).\left(1-2x^2\right)'}{2\sqrt{cos\left(1-2x^2\right)}}=\frac{2x.sin\left(1-2x^2\right)}{\sqrt{cos\left(1-2x^2\right)}}\)
d/ \(y'=\frac{\left(\frac{x+1}{x-1}\right)'}{2\sqrt{\frac{x+1}{x-1}}}=\frac{\frac{-2}{\left(x-1\right)^2}}{2\sqrt{\frac{x+1}{x-1}}}=-\frac{1}{\left(x-1\right)^2\sqrt{\frac{x+1}{x-1}}}\)
e/ \(y'=4\left(1+sin^2x\right)^3\left(1+sin^2x\right)'=8.sinx.cosx\left(1+sin^2x\right)^3=4sin2x.\left(1+sin^2x\right)^3\)

\(A=x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Rightarrow A_{min}=\frac{3}{4}\) khi \(x=\frac{1}{2}\), \(A_{max}\) ko tồn tại
\(B=x^2+2x+5=\left(x+1\right)^2+4\ge4\)
\(\Rightarrow B_{min}=4\) khi \(x=-1\) , \(B_{max}\) ko tồn tại
\(C=\left(5-x\right)^2+2017\ge2017\)
\(\Rightarrow C_{min}=2017\) khi \(x=5\) , \(C_{max}\) ko tồn tại
\(D=20-\left(2x+1\right)^2\le20\)
\(\Rightarrow D_{max}=20\) khi \(x=-\frac{1}{2}\), \(D_{min}\) ko tồn tại
\(E=x^2+2\left|y+1\right|+7\ge7\)
\(\Rightarrow E_{min}=7\) khi \(\left\{{}\begin{matrix}x=0\\y=-1\end{matrix}\right.\) , \(E_{max}\) ko tồn tại

1) đặc : \(f\left(x\right)=y=cot4x\)
điều kiện xác định : \(sin4x\ne0\Leftrightarrow4x\ne k\pi\Leftrightarrow x\ne\dfrac{k\pi}{4}\)
\(\Rightarrow x\in D\) thì \(-x\in D\)
ta có : \(f\left(-x\right)=cot\left(-4x\right)=-cot4x=-f\left(x\right)\)
\(\Rightarrow\) hàm này là hàm lẽ
2) đặc : \(f\left(x\right)=y=\left|cotx\right|\)
điều kiện xác định : \(sinx\ne0\Leftrightarrow x\ne k\pi\)
\(\Rightarrow x\in D\) thì \(-x\in D\)
ta có : \(f\left(-x\right)=\left|cot\left(-x\right)\right|=\left|-cotx\right|=\left|cotx\right|=f\left(x\right)\)
\(\Rightarrow\) hàm này là hàm chẳn
3) đặc : \(f\left(x\right)=y=1-sin^2x=cos^2x\)
điều kiện xác định : \(D=R\)
\(\Rightarrow x\in D\) thì \(-x\in D\)
ta có : \(f\left(-x\right)=cos^2\left(-x\right)=cos^2x=f\left(x\right)\)
\(\Rightarrow\) hàm này là hàm chẳn
4) đặc : \(f\left(x\right)=y=sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{sinx+cosx}{\sqrt{2}}\)
điều kiện xác định : \(D=R\)
\(\Rightarrow x\in D\) thì \(-x\in D\)
ta có : \(f\left(-x\right)=\dfrac{sin\left(-x\right)+cos\left(-x\right)}{\sqrt{2}}=\dfrac{-sinx+cosx}{\sqrt{2}}\ne f\left(x\right);-f\left(x\right)\)
\(\Rightarrow\) hàm này là hàm không chẳn không lẽ
mấy bài còn lại bn làm tương tự cho quen nha

Bạn phải nói rõ điều kiện của dãy ra chứ? Cấp số cộng? Cấp số nhân?

1.
Các hàm \(sinx;sin\frac{x}{2};sin\frac{x}{3};...;sin\frac{x}{10}\) có chu kì lần lượt là \(2\pi;4\pi;6\pi;...;20\pi\)
\(\Rightarrow\) Chu kì của hàm đã cho là \(BCNN\left(2\pi;4\pi;...;20\pi\right)=15120\pi\)
2.
a.
\(y=cos^22x+3cos2x+3\)
\(y=\left(cos2x+1\right)\left(cos2x+2\right)+1\ge1\Rightarrow y_{min}=1\) khi \(cos2x=-1\)
\(y=\left(cos2x-1\right)\left(cos2x+4\right)+7\le7\Rightarrow y_{max}=7\) khi \(cos2x=1\)
b.
Đặt \(a=4sinx-3cosx\Rightarrow a^2\le\left(4^2+\left(-3\right)^2\right)\left(sin^2x+cos^2x\right)=25\)
\(\Rightarrow-5\le a\le5\)
\(y=a^2-4a+1\) với \(a\in\left[-5;5\right]\)
\(y=\left(a-2\right)^2-3\ge-3\Rightarrow y_{min}=-3\) khi \(a=2\)
\(y=\left(a-9\right)\left(a+5\right)+46\le46\Rightarrow y_{max}=46\) khi \(a=-5\)

\(y'=sinx+xcosx\)
\(y''=cosx+cosx-xsinx=2cosx-xsinx\)
\(y'''=-2sinx-sinx-xcosx=-3sinx-xcosx\)
\(y^{\left(4\right)}=-3cosx-cosx+xsinx=-4cosx+xsinx\)
\(y^{\left(5\right)}=4sinx+sinx+xcosx=5sinx+xcosx\)
a/
\(y'''+y'+2sinx=-3sinx-xcosx+sinx+xcosx+2sinx=0\)
b/ \(y''+y=2\Leftrightarrow2cosx-xsinx+xsinx=2\)
\(\Leftrightarrow cosx=1\Rightarrow x=k2\pi\)
c/ \(y^{\left(5\right)}\left(\frac{\pi}{2}\right)=5sin\frac{\pi}{2}+\frac{\pi}{2}.cos\frac{\pi}{2}=5\)

Bài 3:
Đặt a/5=b/4=k
=>a=5k; b=4k
\(a^2-b^2=1\)
\(\Leftrightarrow9k^2=1\)
\(\Leftrightarrow k^2=\dfrac{1}{9}\)
Trường hợp 1: k=1/3
=>a=5/3; b=4/3
Trường hợp 2: k=-1/3
=>a=-5/3; b=-4/3