Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
\(A=\frac{x-z}{x}\cdot\frac{y-x}{y}\cdot\frac{y+z}{z}\)
Do \(x-y-z=0\)
\(\Rightarrow x-z=y;y-x=-z;y+z=x\)
Khi đó \(A=\frac{y}{x}\cdot\frac{-z}{y}\cdot\frac{x}{z}=-1\)
Vậy A=-1
\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}\)
\(=\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)
\(=\frac{1}{xy+x+1}+\frac{y+1}{yz+y+1}\)
\(=\frac{yz}{xy\cdot yz+xyz+yz}+\frac{y+1}{yz+y+1}\)
\(=\frac{yz}{yz+y+1}+\frac{y+1}{yz+y+1}\)
\(=\frac{yz+y+1}{yz+y+1}\)
\(=1\)

Bài 1:
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
Ta thấy:
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\frac{10}{11}=0\)
\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)
Bài 2:
Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

đặt \(\dfrac{x+2y}{3}=\dfrac{y+2z}{4}=\dfrac{z+2x}{5}=t\)
vậy ta đc \(\left\{{}\begin{matrix}x+2y=3t\left(1\right)\\y+2z=4t\left(2\right)\\z+2x=5t\left(3\right)\end{matrix}\right.\)
từ (1) ta có: x = 3t - 2y
thay vào (3) ta được: z + 2 × (3t - 2y) = 5t
=> z + 6t - 4y = 5t => z = -t + 4y (3')
từ (2) ta có: \(z=\dfrac{4t-y}{2}\left(2'\right)\)
từ (2') và (3') ta có:
\(-t+4y=\dfrac{4t-y}{2}\\ -2t+8y=4t-y\\ 9y=6t=>y=\dfrac{2}{3}t\)
thay vào (1): \(x=3t-2\cdot\dfrac{2}{3}t=3t-\dfrac{4}{3}t=\dfrac{5}{3}t\)
thay vào (2'): \(z=\dfrac{4t-\dfrac{2}{3}t}{2}=\dfrac{\dfrac{10}{3}t}{2}=\dfrac{5}{3}t\)
vậy: \(x=\dfrac{5}{3}t;y=\dfrac{2}{3}t;z=\dfrac{5}{3}t\)
thay các giá trị này vào biểu thức trên ta được:
\(xy+yz+2zx=\dfrac{5}{3}t\cdot\dfrac{2}{3}t+\dfrac{2}{3}t\cdot\dfrac{5}{3}t+\dfrac{5}{3}t\cdot\dfrac{5}{3}t\\ xy+yz+2zx=\dfrac{10}{9}t^2+\dfrac{10}{9}t^2+\dfrac{50}{9}t^2\\ =>\dfrac{70}{9}t^2=280=>t=6\\ \left\{{}\begin{matrix}x=\dfrac{5}{3}t=\dfrac{5}{3}\cdot6=10\\y=\dfrac{2}{3}t=\dfrac{2}{3}\cdot6=4\\y=\dfrac{5}{3}t=\dfrac{5}{3}\cdot6=10\end{matrix}\right.\)
vậy các số x; y; z cần tìm lần lượt là 10; 4; 10

Bạn tham khảo tại đây:
Câu hỏi của Hacker Chuyên Nghiệp - Toán lớp 7 - Học toán với OnlineMath
b) (xyz)^2 = 2/3 * 0,6 * 0,625 = 0,25
xyz = 0,5
=> z= xyz : xy = 0,5 : 2/3 = 0,75
=>.....
=> ....