\(4x^2+y^2< 2xy+2x+y+1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 6 2020

\(\Leftrightarrow8x^2+2y^2-4xy-4x-2y< 2\)

\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(y^2-2y+1\right)+\left(4x^2-4x+1\right)< 4\)

\(\Leftrightarrow\left(2x-y\right)^2+\left(y-1\right)^2+\left(2x-1\right)^2< 4\)

\(\Rightarrow\left(2x-1\right)^2< 4-\left(2x-y\right)^2-\left(y-1\right)^2< 4\)

\(\Leftrightarrow\left(2x-1\right)^2=1\) (do \(\left(2x-1\right)^2\) luôn là SCP lẻ)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

- Với \(x=0\Rightarrow y^2-y< 1\Rightarrow\left(2y-1\right)^2< 5\)

\(\Rightarrow\left(2y-1\right)^2=1\Rightarrow\left[{}\begin{matrix}y=0\\y=1\end{matrix}\right.\)

- Với \(x=1\Rightarrow y^2-3y+1< 0\Rightarrow\left(2y-3\right)^2< 5\)

\(\Rightarrow\left(2y-3\right)^2=1\Rightarrow\left[{}\begin{matrix}y=2\\y=1\end{matrix}\right.\)

22 tháng 2 2020

2x2+2xy-x-y-3=0

suy ra (2x2+2xy)-(x+y)=3

suy ra 2x(x+y)-(x+y)=3

suy ra (x+y) .(2x-1) =3

vì x, y nguyên nên x+y nguyên, 2x-1 nguyên

 x+y, 2x-1 thuộc ước nguyên của 3

ta có bảng sau

2x-11-13-3
x+y3-31-1
x102-1
y2-3-10

Vậy (x,y) thuộc { (1;2); (0;-3); (2;-1); (-1;0)}

5 tháng 6 2020

2) \(x^4-x^2+2x+2\)

\(=x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\)

\(=x^2\left(x-1+2\right)\left(x+1\right)\)

\(=x^2\left(x+1\right)^2\)

\(=\left(x^2+x\right)^2\)

Vậy \(x^4-x^2+2x+2\)là số chính phương với mọi số nguyên x

9 tháng 12 2018

\(3xy+x+15y-44=0\)

\(3y\left(x+5\right)+\left(x+5\right)-49=0\)

\(\left(x+5\right)\left(3y+1\right)=49\)

Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)

Có \(\left(x+5\right)\left(3y+1\right)=49\)

\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)

b tự lập bảng nhé~

16 tháng 5 2019

\(2xy+2x-5z=0\Leftrightarrow z=\frac{2xy+2x}{5}\)

Sau đấy bn thay z vào là ra 

3 tháng 11 2020

Ta có: \(2xy+2x-5z=0\Rightarrow z=\frac{2xy+2x}{5}\)

Thay \(z=\frac{2xy+2x}{5}\)vào A, ta được: \(A=x^2+2y^2+2xy+\frac{8}{5}y+\frac{2xy+2x}{5}+2=x^2+2y^2+\frac{12}{5}xy+\frac{8}{5}y+\frac{2}{5}x+2\)\(=\left(x^2+\frac{12}{5}xy+\frac{36}{25}y^2\right)+\frac{2}{5}\left(x+\frac{6}{5}y\right)+\frac{1}{25}+\left(\frac{14}{25}y^2+\frac{28}{25}y+\frac{14}{25}\right)+\frac{7}{5}\)\(=\left[\left(x+\frac{6}{5}y\right)^2+\frac{2}{5}\left(x+\frac{6}{5}y\right)+\frac{1}{25}\right]+\frac{14}{25}\left(y+1\right)^2+\frac{7}{5}\)\(=\left(x+\frac{6}{5}y+\frac{1}{5}\right)^2+\frac{14}{25}\left(y+1\right)^2+\frac{7}{5}\ge\frac{7}{5}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}x+\frac{6}{5}y+\frac{1}{5}=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\Rightarrow z=0\)

\(2x^2+2y^2+z^2-2x+2y+2xy+2yz+2zx+2=0\)

\(\Leftrightarrow\)\(\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\)\(\left(x+y\right)^2+\left(y+z\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\)\(x=-y=z=1\)

\(\Rightarrow\)\(A=x^{2018}+y^{2018}+z^{2018}=1^{2018}+\left(-1\right)^{2018}+1^{2018}=3\)

...