Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\Rightarrow\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}\)
\(=\frac{1+3y+1+7y}{12+4x}=\frac{2+10y}{12+4x}\)
\(=\frac{2\left(1+5y\right)}{2\left(6+2x\right)}=\frac{1+5y}{6+2x}\)
\(\Rightarrow\frac{1+5y}{5x}=\frac{1+5y}{6+2x}\)
\(\Rightarrow5x=6x+2x\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
\(\Rightarrow\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+5y}{5.2}=\frac{1+5y}{10}\)
\(\Rightarrow\frac{1+3y}{12}=\frac{1+5y}{10}\)
\(\Rightarrow10\left(1+3y\right)=12\left(1+5y\right)\)
\(\Rightarrow10+30y=12+60y\)
\(\Rightarrow30y=-2\)
\(\Rightarrow y=-\frac{1}{15}\)
Vậy \(x=2;y=-\frac{1}{15}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(\frac{x}{y}=\frac{2}{3}\Rightarrow x=\frac{2}{3}y\)
Thay \(x=\frac{2}{3}y\)vào A , ta được :
\(A=\frac{5.\frac{2}{3}y+3y}{6.\frac{2}{3}y-7y}\)
\(\Rightarrow A=\frac{\frac{10}{3}y+3y}{4y-7y}\)
\(\Rightarrow A=\frac{\left(\frac{10}{3}+3\right)y}{-3y}\)
\(\Rightarrow A=\frac{\frac{19}{3}y}{-3y}\)
\(\Rightarrow A=\frac{\frac{19}{3}}{-3}\)
\(\Rightarrow A=\frac{19}{3}.-\frac{1}{3}\)
\(\Rightarrow A=-\frac{19}{9}\)
Vậy \(A=-\frac{19}{9}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Nếu $x,y$ là số tự nhiên, $xy=1$ thì chỉ xảy ra TH $x=y=1$
Khi đó:
$\frac{5x+7y}{6x+5y}=\frac{12}{11}\neq \frac{29}{28}$
Bạn xem lại đề nhé.