K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2019

a) 2xy - 3x + 5y = 4

=> 2(2xy - 3x + 5y) = 8

=> 4xy + 6x + 10y = 8

=> 2x(2y + 3) + 5(2y + 3) = 23

=> (2x + 5)(2y + 3) = 23

=> 2x + 5; 2y + 3 \(\in\)Ư(23) = {1; -1; 23; -23}

Lập bảng:

2x + 5 1 -1 23 -23
2y + 3 23 -23 1  -1
   x -2 -3 9 -14
   y 10 -13 -1 -2

Vậy ...

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

Lời giải:

$5y-3x=2xy-11$

$\Leftrightarrow 10y-6x=4xy-22$

$\Leftrightarrow (10y-4xy)-6x+22=0$

$\Leftrightarrow 2y(5-2x)+3(5-2x)+7=0$

$\Leftrightarrow (2y+3)(5-2x)=-7$

Do $x,y$ nguyên nên có các TH sau:

$2y+3=1; 5-2x=-7\Rightarrow (x,y)=(6; -1)$

$2y+3=-1; 5-2x=7\Rightarrow (x,y)=(-1; -2)$

$2y+3=7; 5-2x=-1\Rightarrow (x,y)=(3; 2)$

$2y+3=-7; 5-2x=1\Rightarrow (x,y)=(2,-5)$

Vậy có 4 cặp số thỏa mãn.

 

NV
2 tháng 9

Đề bài thiếu rồi em, phải có x,y,z là số nguyên nữa.

Nếu \(x\ge0\Rightarrow\left|x\right|+3x=x+3x=4x\) chẵn

Nếu \(x<0\Rightarrow\left|x\right|+3x=-x+3x=2x\) chẵn

Nếu \(y\ge0\Rightarrow\left|y\right|+5y=6y\) chẵn

Nếu \(y<0\Rightarrow\left|y\right|+5y=4y\) chẵn

\(\Rightarrow\left|x\right|+\left|y\right|+3x+5y\) luôn chẵn với mọi x,y nguyên

Mà 2z cũng là số chẵn

\(\Rightarrow\left|x\right|+\left|y\right|+3x+5y+2z\) luôn chẵn

Mặt khác 2025 là số lẻ

=> ko tồn tại x,y,z nguyên thỏa mãn \(\left|x\right|+\left|y\right|+3x+5y+2z=2025\)

3 tháng 9

Cho phương trình:

\(\mid x \mid + \mid y \mid + 3 x + 5 y + 2 z = 2025\)

với \(x , y , z \in \mathbb{R}\).


Bước 1: Phân tích các trường hợp theo dấu của \(x\) và \(y\)

Ta có giá trị tuyệt đối của \(x\) và \(y\) phụ thuộc vào dấu của chúng:

  • Nếu \(x \geq 0\), thì \(\mid x \mid = x\)
  • Nếu \(x < 0\), thì \(\mid x \mid = - x\)
  • Tương tự với \(y\).

Bước 2: Xét 4 trường hợp cho dấu của \(x , y\)


Trường hợp 1: \(x \geq 0 , y \geq 0\)

\(\mid x \mid = x , \mid y \mid = y\)

Phương trình trở thành:

\(x + y + 3 x + 5 y + 2 z = 2025 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 4 x + 6 y + 2 z = 2025\)


Trường hợp 2: \(x \geq 0 , y < 0\)

\(\mid x \mid = x , \mid y \mid = - y\)

Phương trình:

\(x - y + 3 x + 5 y + 2 z = 2025 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 4 x + 4 y + 2 z = 2025\)


Trường hợp 3: \(x < 0 , y \geq 0\)

\(\mid x \mid = - x , \mid y \mid = y\)

Phương trình:

\(- x + y + 3 x + 5 y + 2 z = 2025 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 2 x + 6 y + 2 z = 2025\)


Trường hợp 4: \(x < 0 , y < 0\)

\(\mid x \mid = - x , \mid y \mid = - y\)

Phương trình:

\(- x - y + 3 x + 5 y + 2 z = 2025 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 2 x + 4 y + 2 z = 2025\)


Bước 3: Viết lại các phương trình tương ứng:

Trường hợp

Phương trình

1:

 

\(x \geq 0 , y \geq 0\)x≥0,y≥0x≥0,y≥0

\(4 x + 6 y + 2 z = 2025\)4x+6y+2z=20254x+6y+2z=2025

2:

 

\(x \geq 0 , y < 0\)x≥0,y<0x≥0,y<0

\(4 x + 4 y + 2 z = 2025\)4x+4y+2z=20254x+4y+2z=2025

3:

 

\(x < 0 , y \geq 0\)x<0,y≥0x<0,y≥0

\(2 x + 6 y + 2 z = 2025\)2x+6y+2z=20252x+6y+2z=2025

4:

 

\(x < 0 , y < 0\)x<0,y<0x<0,y<0

\(2 x + 4 y + 2 z = 2025\)2x+4y+2z=20252x+4y+2z=2025


Bước 4: Giải hệ cho từng trường hợp (theo tham số)

Ví dụ với trường hợp 1:

\(4 x + 6 y + 2 z = 2025 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 2 z = 2025 - 4 x - 6 y \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } z = \frac{2025 - 4 x - 6 y}{2}\)

với điều kiện \(x \geq 0 , y \geq 0\).


Tương tự cho các trường hợp còn lại, ta có thể biểu diễn \(z\) theo \(x , y\) và các điều kiện về dấu.


Kết luận:

  • Tập nghiệm là tập tất cả các bộ \(\left(\right. x , y , z \left.\right)\) sao cho thỏa mãn một trong các phương trình trên với điều kiện về dấu tương ứng.
  • Ví dụ:

\(\text{N} \overset{ˊ}{\hat{\text{e}}} \text{u}\&\text{nbsp}; x \geq 0 , y \geq 0 , z = \frac{2025 - 4 x - 6 y}{2}\)

và các trường hợp khác tương tự.

11 tháng 12 2018

b) 5x2 +5y2 +8xy + 2x-2y+2 = 0

(x2 +2x+1) + (y2 -2y+1) + (4x2 +8xy + 4y2) = 0

(x+1)2 + (y-1)2 +(2x+2y)2 = 0

=> (x+1)2 = 0 => x = -1

(y-1)2 = 0 => y = 1

(2x+2y)2 = 0

KL: x = -1; y = 1

a) 3x2 +5y= 345 

=> x2 chia hết cho 5

=> x chia hết cho 5

đặt x = 5t=> 75t2+5y2 =345⇒15t2+y2 =69⇒y chia hết cho 3

đặt y = 3z => 15t2+9z2 =69

⇒5t2 +3z2 =23

...

\(x^2+5y^2+2xy-4y<-3\)

=>\(x^2+2xy+y^2+4y^2-4y+1<-3+1=-2\)

=>\(\left(x+y\right)^2+\left(2y-1\right)^2<-2\)

\(\left(x+y\right)^2+\left(2y-1\right)^2\ge0\forall x,y\)

nên (x;y)∈∅

24 tháng 12 2021

6x^2 - 5y^2 = 74

<=> 6(x^2 - 4) = 5(10 - y^2)

--> 6(x^2 - 4) chia hết cho 5. Mà ƯCLN(6; 5) = 1

--> x^2 - 4 chia hết cho 5

Đặt x^2 = 5k + 4 (k tự nhiên)

--> y^2 = 10 - 6k

Do x^2, y^2 > 0 nên 5k + 4, 10 - 6k > 0 --> -4/5 < k < 5/3

--> k = 0 hoặc k = 1

TH1: k = 0 --> y = sqrt(10) (loại)

TH2: k = 1

--> (x; y) = (-3; -2); (3; 2) (thỏa)

6x^2 +5y^2 =74

(1) 6x2≥0 ⇒ 5y2≤74 ⇔

 y2≤745<15 ⇔ y2≤14

⇒y ={±3;±2;±1;0} 6x2≥0 ⇒5y2 ≤74⇔ y2≤745<15⇔ y2≤14 ⇒y={±3;±2;±1;0}

(2)x;y thuộc Z => 6x^2 luôn là số chẵn => y phải chẵn

(3) 6x^2 luôn chia hết cho 3 (74=7+4=11) không chia hết cho 3

=> y không chia hết cho 3

từ (1) (2) và (3) => y=±2y=±2

⇔6x2=74−5.4=54⇔x2=9;x=±3⇔6x2=74−5.4=54⇔x2=9;x=±3

(x;y)=(±3;±2)