Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow\frac{1}{2}+\left(\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x\left(x+1\right)}\right)=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{2}+2.\left(\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{3}{10}\)
\(\Leftrightarrow2.\left(\frac{1}{7}-\frac{1}{x+1}\right)=\frac{3}{10}-\frac{1}{2}=-\frac{1}{5}\)
\(\Leftrightarrow\frac{1}{7}-\frac{1}{x+1}=-\frac{1}{5}:2=-\frac{1}{10}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{7}-\left(-\frac{1}{10}\right)=\frac{17}{70}\)
\(\Rightarrow17x+17=70\)
=> không tồn tại n vì n là số tự nhiên
![](https://rs.olm.vn/images/avt/0.png?1311)
bạn ơi, mình biết làm bài này nhưng cho mình biết làm sao để viết phân số vậy
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ta có:
\(\frac{-1}{2}-1\le x\le\frac{1}{2}.3\)
hay \(-1,5\le x\le1,5\)
vì x\(\in Z\) nên ta chọn x=-1,0,1
ta có:
3S=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\)
3S-S=\(\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^9}\right)\)
2S=1-\(\frac{1}{3^9}\)
s=\(\left(1-\frac{1}{3^9}\right):2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có
1/1*2+1/2*3+1/3*4+...+1/n*(n+1)=1/1-1/2+1/2-1/3+1/3-...-1/n+1= 33/34 (quy tắc)
1 - 1/n+1=33/34
1/n+1=1/34
nên n =33
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có
\(\)\(y=\frac{1}{3}\log^3_{\frac{1}{2}}x+\log^2_{\frac{1}{2}}x-3\log_{\frac{1}{2}}x+1\)
Đặt =\(t=\log_{\frac{1}{2}}x\) ta có
\(y=\frac{1}{3}t^3+t^2-3t+1\)
với \(\frac{1}{4}\le x\le4\Leftrightarrow\frac{1}{4}\le\left(\frac{1}{2}\right)^t\le4\Leftrightarrow-2\le t\le2\)
thay vì tính GTLN,GTNN của hàm số y trên [1/4;4] ta tính GTLN,GTNN của hàm số trên [-2;2]
ta tính \(y'=t^2+2t-3\)
ta tính y'=0 suy ra t=1(loại);t=-3(loại)
ta tính y(2)=\(\frac{5}{3}\);y(-2)=\(\frac{-25}{3}\)
vậy GTNN của y=\(\frac{-25}{3}khi\log_{\frac{1}{2}}x=-2\Rightarrow x=4\)
hàm số đạt GTLN y=\(\frac{5}{3}\) khi \(\log_{\frac{1}{2}}x=2\Leftrightarrow x=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(A=\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\left(x+1\right)}\)
\(\Rightarrow2A=2.\left(\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\left(x+1\right)}\right)=2.\frac{2015}{2017}\)
\(=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{4030}{2017}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{4030}{2017}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}=\frac{4030}{2017}\)
\(=\frac{1}{2}-\frac{1}{x+1}=\frac{4030}{2017}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{4030}{2017}\)
Bạn xem lại đề
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{4}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{8}\right)\left(1-\frac{1}{10}\right)\)
\(=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}.\frac{9}{10}=\frac{63}{256}< \frac{63}{210}=0,3\)
\(x=\sqrt{0,1}>\sqrt{0,09}=0,3\)
=> y<x
1/3.4+1/4.5+1/5.6+.....+1/x(x+1)=3/10
1/3-1/4+1/4-1/5+1/5-........-1/x+1/x-1/x+1=3/10
=>1/3-1/x+1=3/10
1/x+1=3/10-1/3=1/30
=>x+1=30
x=30-1
x=29
Ta có :
\(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{3}{10}\)
=>\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{3}{10}\)
=>\(\frac{1}{3}-\frac{1}{x+1}=\frac{3}{10}\)
=>\(\frac{1}{x+1}=\frac{1}{3}-\frac{3}{10}\)
=>\(\frac{1}{x+1}=\frac{1}{30}\)
=>\(x+1=30\)
=>\(x=30-1\)
=>\(x=29\)
Vậy \(x=29\)