K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2016

4x = 3y => \(\frac{x}{3}=\frac{y}{4}\) 

3y = 6z => \(\frac{y}{6}=\frac{z}{3}\) => \(\frac{y}{4}=\frac{z}{2}\)

=> \(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}\) => \(\frac{x}{3}=\frac{2y}{8}=\frac{3z}{6}\)

Áp dung dãy tỉ số bằng nhau ta có

      \(\frac{x}{3}=\frac{2y}{8}=\frac{3z}{6}=\frac{x-2y+3z}{3-8+6}=\frac{5}{1}=5\)

=> x = 15; y = 20 và z = 10

22 tháng 7 2016

\(4x=3y=6z\)

\(\frac{4x}{12}=\frac{3y}{12}=\frac{6z}{12}\)

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}\)

\(\frac{x}{3}=\frac{2y}{8}=\frac{3z}{6}=\frac{x-2y+3z}{3-8+6}=\frac{5}{1}=5\)

\(\begin{cases}x=15\\y=20\\z=10\end{cases}\)

20 tháng 9 2019

\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)

\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)

\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)

20 tháng 9 2019

mọi người giúp mk câu b, c, d còn lại nha

26 tháng 10 2018

Xét \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=5k\end{matrix}\right.\) (1)

Thay (1) vào P

=> P = \(\dfrac{3k+2.4k+3.5k}{2.5k+3.4k+4.5k}+\dfrac{2.5k+3.4k+4.5k}{3.3k+4.4k+5.5k}\) + \(\dfrac{3.3k+4.4k+5.5k}{4.3k+5.4k+6.5k}\)

=> P = \(\dfrac{26k}{42k}+\dfrac{42k}{50k}\) + \(\dfrac{50k}{62k}\)

=> P = \(\dfrac{13}{21}+\dfrac{21}{25}+\dfrac{25}{31}\approx2,265499232\)

26 tháng 10 2018

lộn đề .

Thay 2z + 3y + 4z = 2x+ 3y + 4z nha

5 tháng 10 2018

Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^

Có gì không hiểu bạn ib nha ^^

1. \(2x=3y-2x\left(1\right)\)\(x+y=14\)

\(\left(1\right)\Leftrightarrow4x=3y\)

\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)

Theo tính chất dãy tỉ số bằng nhau, có:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)

Bạn tự kết luận ^^

5 tháng 10 2018

sao nhieu bt the ban

23 tháng 9 2020

Ta có :\(15x=10y=6z\Rightarrow\hept{\begin{cases}15x=10y\\10y=6z\end{cases}}\Rightarrow\hept{\begin{cases}3x=2y\\5y=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{5}\end{cases}}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)

Khi đó 5x3 + 2y3 - z3 = 31

=> 5(2k)3 + 2(3k)3 - (5k)3 = 31

=> 40k3 + 54k3 - 125k3 = 31

=> -31k3 = 31

=> k3 = -1

=> k = -1

=> x = -2 ; y = -3 ; z = -5

b) Ta có 7x = 14y = 6z =>  \(\hept{\begin{cases}7x=14y\\14y=6z\end{cases}}\Rightarrow\hept{\begin{cases}x=2y\\7y=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{1}\\\frac{y}{3}=\frac{z}{7}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{6}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{7}\end{cases}}\Rightarrow\frac{x}{6}=\frac{y}{3}=\frac{z}{7}\)

Đặt \(\frac{x}{6}=\frac{y}{3}=\frac{z}{7}=k\Rightarrow\hept{\begin{cases}x=6k\\y=3k\\z=7k\end{cases}}\)

Khi đó 2x2 - 3y2 = 5

<=> 2.(6k)2 - 3.(3k)2 = 5

=> 72k2 - 27k2 = 5

=> 45k2 = 5

=> k2 = 1/9

=> k = \(\pm\frac{1}{3}\)

Nếu k = 1/3 => x = 2 ; y = 1 ; z = 7/3

Nếu k = -1/3 => x = -2 ; y = - 1 ; z = -7/3

Vậy các cặp (x;y;z) thỏa mãn là : (2;1;7/3) ; (-2 ; - 1; -7/3)

c) Ta có : \(3x=8y=5z\Rightarrow\frac{3x}{120}=\frac{8y}{120}=\frac{5z}{120}\Rightarrow\frac{x}{40}=\frac{y}{15}=\frac{z}{24}\)

Đặt \(\frac{x}{40}=\frac{y}{15}=\frac{z}{24}=k\Rightarrow\hept{\begin{cases}x=40k\\y=15k\\z=24k\end{cases}}\)

Khi đó |x - 2y| = 5

<=> |40k - 2.15k| = 5

=>  |10k| = 5

=> \(\orbr{\begin{cases}10k=5\\10k=-5\end{cases}}\Rightarrow\orbr{\begin{cases}k=\frac{1}{2}\\k=-\frac{1}{2}\end{cases}}\)

Nếu k = 5 => x = 20 ; y = 7,5 ; z = 12

Nếu k = -5 => x = -20 ; y =-7,5 ; z = -12

d) 4x = 5y = 6z => \(\frac{4x}{60}=\frac{5y}{60}=\frac{6z}{60}\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{10}\)

Đặt \(\frac{x}{15}=\frac{y}{12}=\frac{z}{10}=k\Rightarrow\hept{\begin{cases}x=15k\\y=12k\\z=10k\end{cases}}\)

Khi đó (3x - 2y)2 = 16

<=> (3.15k - 2.12k)2 = 16

=> (45k -24k)2 = 16

=> (21k)2 = 16

=> \(\orbr{\begin{cases}21k=4\\21k=-4\end{cases}}\Rightarrow\orbr{\begin{cases}k=\frac{4}{21}\\k=-\frac{4}{21}\end{cases}}\)

Nếu k = 4/21 => x = 20/7 ; y = 16/7 ; z = 40/21

Nếu k = -4/21 => x = -20/7 ; y = -16/7 ; z = -40/21

23 tháng 9 2020

Ai có cách làm khác không 

9 tháng 9 2015

Vì \(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\)

\(4x=6z\Rightarrow\frac{x}{6}=\frac{z}{4}\Rightarrow\frac{x}{3}=\frac{z}{2}\)

\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{2}\)

\(\Rightarrow\frac{2x}{6}=\frac{7y}{28}=\frac{3z}{6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{2x}{6}=\frac{7y}{28}=\frac{3z}{6}=\frac{2x+7y-3z}{6+28-6}=\frac{2}{28}=\frac{1}{14}\)

\(\cdot\frac{x}{3}=\frac{1}{14}\Rightarrow x=\frac{3}{14}\)

\(\cdot\frac{y}{4}=\frac{1}{14}\Rightarrow y=\frac{2}{7}\)

\(\cdot\frac{z}{2}=\frac{1}{14}\Rightarrow z=\frac{1}{7}\)

 

5 tháng 12 2018

thôi,ai giải đc thì giải,hết mẹ hạn r