\(\frac{x}{2}=\frac{y}{3};\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\frac{x}{2}=\frac{y}{3}\)

=>\(\frac{x}{4}=\frac{y}{6}\) (1)

\(\frac{y}{2}=\frac{z}{5}\)

=>\(\frac{y}{6}=\frac{z}{15}\) (2)

Từ (1),(2) suy ra \(\frac{x}{4}=\frac{y}{6}=\frac{z}{15}\)

mà x+y+z=50

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{x}{4}=\frac{y}{6}=\frac{z}{15}=\frac{x+y+z}{4+6+15}=\frac{50}{25}=2\)

=>\(\begin{cases}x=2\cdot4=6\\ y=2\cdot6=12\\ z=2\cdot15=30\end{cases}\)

b: Đặt \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}=k\)

=>x=5k; y=7k; z=3k

Ta có: \(x^2+y^2+z^2=585\)

=>\(\left(5k\right)^2+\left(7k\right)^2+\left(3k\right)^2=585\)

=>\(25k^2+49k^2+9k^2=585\)

=>\(83k^2=585\)

=>\(k^2=\frac{585}{83}\)

=>\(k=\pm\sqrt{\frac{585}{83}}\)

TH1: \(k=\sqrt{\frac{585}{83}}\)

=>\(\begin{cases}x=5k=5\cdot\sqrt{\frac{585}{83}}\\ y=7k=7\cdot\sqrt{\frac{585}{83}}\\ z=3k=3\cdot\sqrt{\frac{585}{83}}\end{cases}\)

TH2: \(k=-\sqrt{\frac{585}{83}}\)

=>\(\begin{cases}x=5k=-5\cdot\sqrt{\frac{585}{83}}\\ y=7k=-7\cdot\sqrt{\frac{585}{83}}\\ z=3k=-3\cdot\sqrt{\frac{585}{83}}\end{cases}\)

Mọi người giúp mình với, cô Thương giúp em với ạ!!!

Chứng minh rằng:

Nếu \(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\) thì\(\frac{x-y}{8}=\frac{y-z}{10}\)

18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.

3 tháng 10 2020

a) Ta có : \(\frac{x}{y}=\frac{6}{5}\) => \(\frac{x}{6}=\frac{y}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{6}=\frac{y}{5}=\frac{x+y}{6+5}=\frac{121}{11}=11\)

=> x = 11.6 = 66,y = 11.5 = 55

b) 4x = 5y => \(\frac{x}{5}=\frac{y}{4}\)=> \(\frac{2x}{10}=\frac{5y}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{10}=\frac{5y}{20}=\frac{2x-5y}{10-20}=\frac{40}{-10}=-4\)

=> x = (-4).5 = -20 , y = (-4).4 = -16

c) Đặt \(\frac{x}{3}=\frac{y}{16}=t\Rightarrow\hept{\begin{cases}x=3t\\y=16t\end{cases}}\)

=> xy = 3t.16t = 48t2

=> 48t2 = 192

=> t2 = 4

=> t = \(\pm\)2

Với t = 2 thì x = 3.2 = 6,y = 16.2 = 32

Với t = -2 thì x = -6,y = -32

d) \(\frac{x}{-3}=\frac{y}{7}\)

=> \(\frac{x^2}{9}=\frac{y^2}{49}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{9}=\frac{y^2}{49}=\frac{x^2-y^2}{9-49}=\frac{-360}{-40}=9\)

=> x2 = 9.9 = 81 => x = \(\pm\)9

y2 = 9.49 = 441 => y = \(\pm\)21

Câu e,f tương tự

3 tháng 10 2020

làm hộ mik cả câu e,f nx nhé

6 tháng 8 2016

a) Aps dụng tính chất các dãy tỉ số bằng nhau, ta có:

x/4  =y/3 = z/9 = 3y/9 = 4z/36 = (x-3y+4z)/(4-9+36)= 62/31 = 2

=> x=2.4=8

     y=2.3=6

     z=2.9=18

6 tháng 8 2016

a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)

ADTCCDTSBN, ta có: 

\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)

\(\Rightarrow x=2.4=8\)

\(y=2.3=6\)

\(z=2.9=18\)

b) Đề có nhầm lẫn j k nhỉ =.=

c) \(5x=8y=20z\Leftrightarrow\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}\)

ADTCCDTSBN, ta có:

\(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}=\frac{x+y+z}{\frac{1}{5}+\frac{1}{8}+\frac{1}{20}}=-\frac{15}{\frac{3}{8}}=-40\)

\(\Rightarrow x=-40:5=-8\)

\(y=-40:8=-5\)

\(z=-40:20=-2\)

11 tháng 5 2019

a, Ta có :   \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) =>  \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{4+9+16}=\frac{29}{29}=1\)

                                                        ( Tính chất dãy tỉ số bằng nhau )

=> x2 = 4  ;  y2 = 9  ;  z2 = 16

=> x = 2 hoặc x = - 2  ; y = 3 hoặc y = - 3  ; z = 4 hoặc z = - 4 

Vậy x = 2 hoặc x = - 2  ; y = 3 hoặc y = - 3  ; z = 4 hoặc z = - 4 

11 tháng 5 2019

b, Ta có :  \(\frac{x}{5}=\frac{y}{4}=\frac{z}{2}\)   =>   \(\frac{x^3}{125}=\frac{y^3}{64}=\frac{z^3}{8}=\frac{x^3-y^3+z^3}{125-64+8}=\frac{69}{69}=1\)

                                                            ( Tính chất dãy tỉ số bằng nhau )

=> x3 = 125  ; y= 64  ; z3 = 8

=> x = 5 ; y = 4 ; z = 2

Vậy x = 5 ; y = 4 ; z = 2

18 tháng 7 2018

\(\frac{x}{y}=\frac{5}{2}\)

\(\Rightarrow\frac{x}{5}=\frac{y}{2}\)

áp dụng t\c của dãy tỉ số bằng nhau ta có :

\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{15}{3}=5\)

\(\Rightarrow\hept{\begin{cases}x=5\cdot5=25\\y=5\cdot2=10\end{cases}}\)

18 tháng 7 2018

Ta có: x/y=5/2 và x—y=15

==> x/5=y/2 và x—y=15

Áp Dụng tính chất dãy tỉ số bằng nhau, ta có

x/5=y/2= x—y/5–2=15/3=5

Ta được: x=5.5=25

y=5.2=10

b)Ta có:x/9=y/2 và x—3y=18

Áp Dụng tính chất dãy tỉ số bằng nhau, ta có:

x/9=y/2=x/9=3y/6=x—3y/9–6=18/3=6

Ta được: x= 9.6=54

y=2.6=12

c) Ta có: x/7=y/5=z/2 và x—y+z=—40

Áp Dụng dính chất dãy tỉ số bằng nhau, ta có:

x/7=y/5=z/2= x—y+z/7–5+2= —40/ 4=—10

Ta được: x= 7.(—10)=—70

y= 5.(—10)=—50

z= 2.(—10)=—20

11 tháng 10 2020

Mình ko ghi áp dụng tính chất dãy bằng nhau nx nhé

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=2\Rightarrow x=2.2=4;y=2.3=6;z=2.4=8\)

\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{-z}{-7}=\frac{x+y-z}{5-6-7}=\frac{32}{-8}=-4\Leftrightarrow x=-20;y=24;z=-28\)

\(\frac{2x}{10}=\frac{3y}{6}=\frac{5z}{15}=\frac{2x-3y+5z}{10-6+15}=\frac{38}{19}=2\Rightarrow x=10;y=4;z=6\)

11 tháng 10 2020

bn làm đúng rồi nhá và 1 k cho bạn

15 tháng 7 2019

\(a,\frac{x}{19}=\frac{y}{21}\) và 2x - y = 34

Ta có : \(\frac{x}{19}=\frac{y}{21}\Leftrightarrow\frac{2x}{38}=\frac{y}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

Vậy : \(\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=38\\y=42\end{cases}}\)

15 tháng 7 2019

\(b,\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và x + y + z =  60

Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{60}{12}=5\)

Vậy : \(\hept{\begin{cases}\frac{x}{3}=5\\\frac{y}{4}=5\\\frac{z}{5}=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=15\\y=20\\z=25\end{cases}}\)

29 tháng 9 2016

Đăng từng bài thôi chứ bạn

29 tháng 9 2016

mất công lém