
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


nguyen tran phuong vy: vt sai kìa, phải là I don't know

a)Từx:y:z=3:5:(−2)=>\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}\)
Áp dụng t/c của dãy tỉ số bằng nhau,ta có
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}=\dfrac{5x-y+3z}{5.3-5+3.\left(-2\right)}=-\dfrac{16}{4}=-4\)
=>x=-12
y=-20
z=8
Vậy...
Các câu sau tương tự

a) Xem lại đề
b) Ta có: \(2x=4y=5z\)=> \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}\) => \(\frac{2x}{1}=\frac{3y}{\frac{3}{4}}=\frac{z}{\frac{1}{5}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{1}=\frac{3y}{\frac{3}{4}}=\frac{z}{\frac{1}{5}}=\frac{2x-3y-z}{1-\frac{3}{4}-\frac{1}{5}}=\frac{1}{\frac{1}{20}}=20\)
=> \(\hept{\begin{cases}\frac{x}{\frac{1}{2}}=20\\\frac{y}{\frac{1}{4}}=20\\\frac{z}{\frac{1}{5}}=20\end{cases}}\) => \(\hept{\begin{cases}x=20.\frac{1}{2}=10\\y=20.\frac{1}{4}=5\\z=20.\frac{1}{5}=4\end{cases}}\)
Vậy x = 10; y = 5 và z = 4
a)\(\frac{x}{5}=\frac{y}{6};\frac{y}{2}=\frac{z}{3}\)va \(x^3-2x^2y+z^3\)

a) Ta có: \(6x=4y=3z\Rightarrow\dfrac{6x}{12}=\dfrac{4y}{12}=\dfrac{3z}{12}\Rightarrow\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}=\dfrac{x+2y-3z}{2+6-12}=\dfrac{-2}{-4}=\dfrac{1}{2}.\)
Với: \(\dfrac{x}{2}=\dfrac{1}{2}\Rightarrow x=1.\)
\(\dfrac{2y}{6}=\dfrac{y}{3}=\dfrac{1}{2}\Rightarrow y=\dfrac{1}{2}.3=\dfrac{3}{2}.\)
\(\dfrac{3z}{12}=\dfrac{z}{4}=\dfrac{1}{2}\Rightarrow z=\dfrac{1}{2}.4=\dfrac{4}{2}=2.\)
Vậy: \(x=1;y=\dfrac{3}{2};z=2.\)

\(\frac{x}{2}=\frac{y}{3};\frac{y}{2}=\frac{z}{5}\)
\(\Leftrightarrow\frac{x}{4}=\frac{y}{6};\frac{y}{6}=\frac{z}{15}\)
\(\Leftrightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{15}=\frac{x}{4}=\frac{y}{6}=\frac{3z}{45}\)
\(\Leftrightarrow\frac{x}{4}=\frac{y}{6}=\frac{3z}{45}=\frac{z+y-3z}{4+6-45}=\frac{2}{-35}\) ( áp dụng tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=\frac{2}{-35}\\\frac{y}{6}=\frac{2}{-35}\\\frac{3z}{45}=\frac{2}{-35}\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{8}{35}\\y=-\frac{12}{35}\\z=-\frac{6}{7}\end{cases}}\)
lại bài này