![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
xy+2x+y+11=0
=> x.(y+2)+y=-11
=> x.(y+2)+(y+2)= -11+2=-9
=> (x+1).(y+2)=-9
=> x+1 và y+2 thuộc Ư(-9)={1;-1;3;-3;9;-9}
x+1 y+2 x y 1 -9 0 -11 -1 9 -2 7 3 -3 2 -5 -3 3 -4 1 9 -1 8 -3 -9 1 -10 -1
Vậy....
\(xy+2x+y+11=0\)
\(\Rightarrow y\left(x+y\right)+2\left(x+5,5\right)=0\)
\(\Rightarrow\hept{\begin{cases}y\left(x+y\right)=0\\x+5,5=0\end{cases}\Rightarrow\hept{\begin{cases}y=0\\x=-5,5\end{cases}}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài làm:
Ta có:
\(M=\frac{xy+y+5}{xy+y+4}=\frac{\left(xy+y+4\right)+1}{xy+y+4}=1+\frac{1}{xy+y+4}\)
Vậy để M là số nguyên thì \(\frac{1}{xy+y+4}\inℤ\)
=> \(1⋮\left(xy+y+4\right)\)
=> \(xy+y+4\inƯ\left(1\right)=\left\{-1;1\right\}\)
Ta xét 2 trường hợp sau:
*TH1
Nếu \(xy+y+4=-1\)
\(\Leftrightarrow x\left(y+1\right)=5\)
Ta có: \(5=1.5=\left(-1\right)\left(-5\right)\)nên ta xét các trường hợp sau:
+Nếu: \(\hept{\begin{cases}x=1\\y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=4\end{cases}\left(tm\right)}}\)
+Nếu: \(\hept{\begin{cases}x=5\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=0\end{cases}\left(tm\right)}}\)
+Nếu: \(\hept{\begin{cases}x=-1\\y+1=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-6\end{cases}}}\)(tm)
+Nếu: \(\hept{\begin{cases}x=-5\\y+1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-2\end{cases}\left(tm\right)}}\)
*TH2
Nếu \(xy+x+4=1\Leftrightarrow x\left(y+1\right)=-3\)
Ta có: \(-3=\left(-1\right).3=1.\left(-3\right)\)nên ta xét các trường hợp sau:
+Nếu: \(\hept{\begin{cases}x=1\\y+1=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-4\end{cases}\left(tm\right)}}\)
+Nếu: \(\hept{\begin{cases}x=-1\\y+1=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}\left(tm\right)}}\)
+Nếu: \(\hept{\begin{cases}x=3\\y+1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}\left(tm\right)}}\)
+Nếu: \(\hept{\begin{cases}x=-3\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=0\end{cases}}}\)(tm)
Vậy ta có 8 cặp số (x;y) thỏa mãn để M nguyên là: (1;4) ; (5;0) ; (-1;-6) ; (-5;-2) ; (1;-4) ; (-1;2) ; (3;-2) ; (-3;0)
Học tốt!!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
1. \(\frac{x+2}{5}=\frac{3x-2}{2}\)
=> 2(x + 2) = 5(3x - 2)
=> 2x + 4 = 15x - 10
=> 2x - 15x = -10 - 4
=> -13x = -14
=> x = 13/4
Bài 1: \(\frac{x+2}{5}=\frac{3x-2}{2}\)
<=> 2x+4=15x-10
<=> 2x-15x=-10-4
<=> -13x=-14
<=> x=\(\frac{14}{13}\)
Bài 2: xy+2x+y=0
<=> (xy+2x)+(y+2)=2
<=> x(y+2)+(y+2)=2
<=> (y+2)(x+1)=2
Vì x,y nguyên => y+2; x+1 nguyên => y+2; x+1 nguyên
=> y+2; x+1 \(\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
ta có bảng
x+1 | -2 | -1 | 1 | 2 |
x | -3 | -2 | 0 | 1 |
y+2 | -1 | -2 | 2 | 1 |
y | -3 | -4 | 0 | -1 |
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(\left\{{}\begin{matrix}x^2+xy+\dfrac{y^2}{3}=2019\\z^2+\dfrac{y^2}{3}=1011\\x^2+xz+z^2=1008\end{matrix}\right.\Leftrightarrow x^2+xy+\dfrac{y^2}{3}=z^2+\dfrac{y^2}{3}+x^2+xz+z^2\)
\(\Rightarrow xy=2z^2+xz\Leftrightarrow xy+xz=2z^2+2xz\)
\(\Rightarrow x\left(y+z\right)=2z\left(x+z\right)\Leftrightarrow\dfrac{2z}{x}=\dfrac{y+z}{x+z}\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\Leftrightarrow x\cdot\dfrac{1}{4}=\dfrac{1}{2}+\dfrac{1}{9}=\dfrac{11}{18}\)
hay \(x=\dfrac{11}{18}:\dfrac{1}{4}=\dfrac{11}{18}\cdot4=\dfrac{44}{18}=\dfrac{22}{9}\)
d: =>x+1;x-2 khác dấu
Trường hợp 1: \(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Leftrightarrow-1< x< 2\)
Trường hợp 2: \(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Leftrightarrow2< x< -1\left(loại\right)\)
e: =>x-2>0 hoặc x+2/3<0
=>x>2 hoặc x<-2/3
![](https://rs.olm.vn/images/avt/0.png?1311)
1) 1/x-1/y
=y/xy-x/xy
=y-x/xy
= - (x-y)/xy
= -1 (vì x-y=xy)
2)
(x- 1/2)*(y+1/3)*(z-2)=0
=> x-1/2 = 0 hoac y+1/3=0 hoac z-2=0
th1 :x-1/2=0 => x=1/2
x+2=y+3=z+4
mà x=1/2 => y= -1/2 ; z=-3/2
th2: y+1/3=0
th3 : z-2=0
(tự làm nha)
1) Với x,y khác 0, Ta có
\(\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}=-\left(\frac{x-y}{xy}\right)=-\left(\frac{xy}{xy}\right)=-1\)
Vậy \(\frac{1}{x}-\frac{1}{y}=-1\)
2) Ta có:
\(\left(x-\frac{1}{2}\right)\left(y+\frac{1}{3}\right)\left(z-2\right)=0\)
Trường hợp 1: x - 1/2 = 0 => x = 1/2 \(\Rightarrow\hept{\begin{cases}y=\frac{1}{2}+2-3=-\frac{1}{2}\\z=\frac{1}{2}+2-4=-\frac{3}{2}\end{cases}}\)
Trường hợp 2: y + 1/3 = 0 => y = -1/3 \(\Rightarrow\hept{\begin{cases}x=-\frac{1}{3}+3-2=\frac{2}{3}\\z=-\frac{1}{3}+3-4=-\frac{4}{3}\end{cases}}\)
Trường hợp 3: z - 2 = 0 => z = 2 \(\Rightarrow\hept{\begin{cases}x=2+4-2=4\\y=2+4-3=3\end{cases}}\)
Vậy......
Ta có: xy+x+y-2=0
=> xy+x+y=2
=>x(y+1)+y=2
=>x(y+1)+y+1=3
=>(y+1).(x+1)=3
Ta có bảng sau:
Vậy có 4 cặp số x,y thỏa mãn điều kiện bài toán là:
(x=0;y=2);(x=2;y=0);(x=-2;y=-4);(x=-4;y=-2)
xy + x + y - 2 = 0
<=> xy + x + y = 2
<=> x(y+1) + (y+1) = 3
<=> (y+1)(x+1) = 3
-3
Vậy các cặp (x,y) thỏa mãn là: (0;2);(-2;-4);(2;0);(-4;-2)
Sorry, bài lúc nãy viết lộn xộn nên nhầm chút