Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

mk làm mẫu 2 bài đầu nhé, các bài còn lại bạn làm tương tự, các bài này đều áp dụng tính chất dãy tỉ số bằng nhau
1) Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)
suy ra: \(\frac{x}{3}=2\)=> \(x=6\)
\(\frac{y}{4}=2\)=> \(y=8\)
Vậy...
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{20}{2}=10\)
suy ra: \(\frac{x}{5}=10\)=> \(x=50\)
\(\frac{y}{3}=10\)=> \(y=30\)
Vậy...

a/ 2x = 5y và x - 2y = -12
Ta có: 2x = 5y => \(\frac{x}{5}=\frac{y}{2}\)
Áp dụng: tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5+2}=\frac{x-2y}{5+2.2}=\frac{-12}{9}=-\frac{4}{3}\)
\(\frac{x}{5}=-\frac{4}{3}\Rightarrow x=\frac{-4}{3}.5=-\frac{20}{3}\)
\(\frac{y}{2}=-\frac{4}{3}\Rightarrow y=-\frac{4}{3}.2=-\frac{8}{3}\)
Vậy:.................
b/ 2x = 3y = 4z và x + y + z =21
Ta có: 2x = 3y = 4z
=> \(\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)
=> \(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng: tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{6+4+3}=\frac{21}{13}\)
\(\frac{x}{6}=\frac{21}{13}\Rightarrow x=\frac{21}{13}.6=\frac{126}{13}\)
\(\frac{y}{4}=\frac{21}{13}\Rightarrow y=\frac{21}{13}.4=\frac{84}{13}\)
\(\frac{z}{3}=\frac{21}{13}\Rightarrow z=\frac{21}{13}.3=\frac{63}{13}\)
Vậy:...............
c/Áp dụng: tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{32}{8}=4\)
\(\frac{x}{3}=4\Rightarrow x=4.3=12\)
\(\frac{y}{5}=4\Rightarrow y=4.5=20\)
Vậy:................
d/ Ta có: 7x = 3y
=> \(\frac{7x}{21}=\frac{3y}{21}\)
=> \(\frac{x}{3}=\frac{y}{7}\)
Áp dụng: tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)
\(\frac{x}{4}=-4\Rightarrow x=\left(-4\right).4=-16\)
\(\frac{y}{7}=-4\Rightarrow y=\left(-4\right).7=-28\)
Vậy:................

Lời giải:
a, Ta có: \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\). Mà theo đề bài: 5x + y - 2z = 28
=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{5x}{50}=\frac{x}{10}=2\Leftrightarrow x=20\\\frac{y}{6}=2\Leftrightarrow y=12\\\frac{2z}{42}=\frac{z}{21}=2\Leftrightarrow z=42\end{matrix}\right.\)(TMĐK)
Vậy: \(x=20;y=12;z=42\)
b, Ta có: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\) ; \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\). Mà theo đề bài: 2x+3y - z = 124
=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{2x}{30}=\frac{x}{15}=2\Leftrightarrow x=30\\\frac{3y}{60}=\frac{y}{20}=2\Leftrightarrow y=40\\\frac{z}{28}=2\Leftrightarrow z=56\end{matrix}\right.\)(TMĐK)
Vây:\(x=30;y=40;z=56\)
c, Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x.x}{2}=\frac{x.y}{3}\). Mà x.y = 54
\(\Rightarrow\frac{x.x}{2}=\frac{x.y}{3}=\frac{54}{3}=18\)
\(\Rightarrow\frac{x^2}{2}=18\Rightarrow x^2=36\Rightarrow x\in\left\{6;-6\right\}\)
Nếu \(x=6\Rightarrow\frac{6.y}{3}=18\Rightarrow6.y=54\Rightarrow y=9\)
Nếu \(x=-6\Rightarrow\frac{-6.y}{3}=18\Rightarrow-6.y=54\Rightarrow y=-9\)
Vậy: \(\left(x;y\right)\in\left\{\left(6;9\right),\left(-6;-9\right)\right\}\)

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)và x + y -z = 10
\(\frac{x}{2}=\frac{y}{3}=\frac{1}{4}.\frac{x}{2}=\frac{1}{4}.\frac{y}{3}\)\(=\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}=\frac{1}{3}.\frac{y}{4}=\frac{1}{3}.\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\)
\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)và x + y - z = 10
Theo tính chất dãy tỉ số bằng nhau:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
* \(\frac{x}{8}=2\Rightarrow x=2.8=16\)
* \(\frac{y}{12}=2\Rightarrow y=2.12=24\)
* \(\frac{z}{5}=2\Rightarrow z=2.5=10\)
Vậy...
Ý mk nhầm chút xíu nhé! Cko sorry!
* \(\frac{z}{15}=2\Rightarrow z=2.15=30\)
... :( Xl

2). Ta có: x/2=y/3 => x/8 = y/12
y/4=z/5 => y/12 = z/15
=> x/2=y/12=z/15 và x+y-z=10
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)=\(\frac{x+y-z}{2+12-15}\)=\(\frac{10}{-1}\)= -10
=> x=2.(-10)=-20
y=12.(-10)=-120
z=15.(-10)=-150
Vậy x=-20; y=-120;z=-150
3). Đặt \(\frac{x}{2}\)=\(\frac{y}{5}\)= k
=> x=2k
y=5k
Ta có xy = 10
2k.5k =10
10. k2=10
k2 = 10 :10=1
=> k =1; k=-1
+) k = 1
=> x=2.1=2
y=5.1=5
+) k = -1
=> x= 2.(-1) =-2
y=5.(-1) = -5
Vậy x=2;y=5 hoặc x=-2;y=-5
Câu 2:
Ta có \(\frac{x}{2}=\frac{y}{3}=\frac{x}{8}=\frac{y}{12}\)(1)
\(\frac{y}{4}=\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\)(2)
Từ (1) và (2) suy ra:\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}\)\(\Rightarrow\begin{cases}x=16\\y=24\\z=30\end{cases}\)
Vậy x=16;y=24;z=30

Ta có:
x/2 = y/3 => x = y/3 × 2 => x = 2/3 × y
y/4 = z/5 => z = y/4 × 5 => z = 5/4 × y
Lại có: x + y - z = 10
=> 2/3 × y + y - 5/4 × y = 10
=> 5/3 × y - 5/4 × y = 10
=> 5 × (1/3 × y - 1/4 × y) = 10
=> y × (1/3 - 1/4) = 10 : 5
=> y × 1/12 = 2
=> y = 2 : 1/12
=> y = 2 × 12 = 24
=> x = 2/3 × 24 = 16
=> z = 24 × 5/4 = 30

a) Ta có: \(\frac{x}{12}=\frac{y}{3}.\)
=> \(\frac{x}{12}=\frac{y}{3}\) và \(x-y=36.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{12}=\frac{y}{3}=\frac{x-y}{12-3}=\frac{36}{9}=4.\)
\(\left\{{}\begin{matrix}\frac{x}{12}=4=>x=4.12=48\\\frac{y}{3}=4=>y=4.3=12\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(48;12\right).\)
b)
\(\frac{2}{3}+\frac{5}{3}x=\frac{5}{7}\)
⇒ \(\frac{5}{3}x=\frac{5}{7}-\frac{2}{3}\)
⇒ \(\frac{5}{3}x=\frac{1}{21}\)
⇒ \(x=\frac{1}{21}:\frac{5}{3}\)
⇒ \(x=\frac{1}{35}\)
Vậy \(x=\frac{1}{35}.\)
\(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
⇒ \(\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)
⇒ \(x-\frac{1}{2}=\frac{1}{3}\)
⇒ \(x=\frac{1}{3}+\frac{1}{2}\)
⇒ \(x=\frac{5}{6}\)
Vậy \(x=\frac{5}{6}.\)
Có 1 câu bạn đăng mình làm ở dưới rồi mà.
Chúc bạn học tốt!
a)áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{12}=\frac{y}{3}=\frac{x-y}{12-3}=\frac{36}{9}=4\)
\(\)x/12=4 suy ra x=12.4=48
y/3=4 suy ra y=3.4 =12
b)\(\frac{2}{3}+\frac{5}{3}x=\frac{5}{7}\)
\(\frac{5}{3}x=\frac{5}{7}-\frac{2}{3}\)
\(\frac{5}{3}x=\frac{1}{21}\)
\(x=\frac{1}{21}:\frac{5}{3}\)
\(x=\frac{1}{35}\)
\(\frac{11}{12}-\left(\frac{2}{5}+x\right)=\frac{2}{3}\)
\(\left(\frac{2}{5}+x\right)=\frac{11}{12}-\frac{2}{3}\)
\(\frac{2}{5}+x=\frac{1}{4}\)
\(x=\frac{1}{4}-\frac{2}{5}\)
\(x=\frac{-3}{20}\)
\(\left|x-\frac{2}{5}\right|+\frac{3}{4}=\frac{11}{4}\)
\(\left|x-\frac{2}{5}\right|=\frac{11}{4}-\frac{3}{4}\)
\(\left|x-\frac{2}{5}\right|=2\)
suy ra x-2/5=2 hoac x-2/5=-2
\(x-\frac{2}{5}=2\)
\(x=\frac{12}{5}\)
\(x-\frac{2}{5}=-2\)
\(x=\frac{-8}{5}\)
\(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
\(\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)
\(x-\frac{1}{2}=\frac{1}{3}\)
\(x=\frac{1}{3}+\frac{1}{2}\)
\(x=\frac{5}{6}\)

\(\text{Áp dụng dãy tỉ lệ bằng nhau ta được:}\)
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}=\frac{x+y+z+6}{3+4+5}=\frac{24}{12}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.3-1=5\\y=2.4-1=7\\z=2.5-3=7\end{cases}}\)
o) \(\frac{x}{-3}=\frac{y}{-5}=\frac{z}{-4}=\frac{2x}{2.\left(-3\right)}=\frac{y}{-5}=\frac{3z}{3.\left(-4\right)}=\frac{2x}{-6}=\frac{y}{-5}=\frac{3z}{-12}\)
Áp dụng tính chất DTSBN:
\(\frac{x}{-3}=\frac{y}{-5}=\frac{z}{-4}=\frac{2x}{-6}=\frac{y}{-5}=\frac{3z}{-12}=\frac{3z-2x}{-12-\left(-6\right)}=\frac{36}{-6}=-6\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{-3}=-6\Rightarrow x=-3.\left(-6\right)=18\\\frac{y}{-5}=-6\Rightarrow y=-5.\left(-6\right)=30\\\frac{z}{-4}=-6\Rightarrow z=-4.\left(-6\right)=24\end{cases}}\)
Vậy x = 18, y = 30, z = 24
p) \(\frac{x}{4}=\frac{y}{3}\Rightarrow\left(\frac{x}{4}\right)^2=\left(\frac{y}{3}\right)^2=\frac{xy}{4.3}=\frac{12}{12}=1\)
\(\Rightarrow\hept{\begin{cases}\left(\frac{x}{4}\right)^2=1\Rightarrow\frac{x^2}{16}=1\Rightarrow x^2=1.16=16=4^2\\\left(\frac{y}{3}\right)^2=1\Rightarrow\frac{y^2}{9}=1\Rightarrow y^2=1.9=9=3^2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x\in\text{{}4;-4\\y\in\text{{}3;-3\end{cases}}\)Nhớ thêm dấu ''}'' ở đằng sau -4 và -3 nhé
Vậy ...

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1) và (2)=>\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng thính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow\frac{x}{8}=2\Rightarrow x=2.8=16\)
\(\Rightarrow\frac{y}{12}=2\Rightarrow y=2.12=24\)
x/5=y/3= x^2-y^2/5^2-3^2=16/16=1
x/5=1=>5
y/3=1 => 3
2) đặt x/2=y/5=k
suy ra x=2k
y=5k
x.y=2k.5k=k^2.10
mà k^2.10=10
suy ra k^2=10:10=1
suy ra k^2=1
k=1
suy ra x=2.1=2
y=5.1=5
vậy x=2 y=5