
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\left(x-2013\right)^{2014}=1\)
\(\Rightarrow\orbr{\begin{cases}x-2013=1\\x-2013=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2013+1\\x=-1+2013\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2014\\x=2012\end{cases}}\)
Vậy x=2014 hoặc x=2012
hok tốt

\(a,\frac{x+8}{3}+\frac{x+7}{2}=-\frac{x}{5}\)
\(\Leftrightarrow\frac{10\cdot\left(x+8\right)}{30}+\frac{15\left(x+7\right)}{30}=\frac{-6x}{30}\)
\(\rightarrow10x+80+15x+105=-6x\)
\(\Leftrightarrow31x+185=0\)
\(\Leftrightarrow x=-\frac{185}{31}\)
b,\(b,\frac{x-8}{3}+\frac{x-7}{4}=4+\frac{1-x}{5}\)
\(\Leftrightarrow\frac{20\left(x-8\right)}{60}+\frac{15\left(x-7\right)}{60}=\frac{240}{60}+\frac{12\left(1-x\right)}{60}\)
\(\rightarrow20x-160+15x-105=240+12-12x\)
\(\Leftrightarrow47x-517=0\)\(\Leftrightarrow x=11\)

\(10^x:5^y=20^y\)
\(\Rightarrow10^x=20^y\cdot5^y\)
\(\Rightarrow10^x=\left(20\cdot5\right)^y\)
\(\Rightarrow10^x=100^y\)
\(\Rightarrow10^x=\left(10^2\right)^y\)
\(\Rightarrow10^x=10^{2y}\)
\(\Rightarrow x=2y\)
Vậy tìm được vô số giá trị của x và y thỏa mãn x=2y

( 3x - 1/2 ) + ( 1/2y + 3/5 ) = 0
=> ( 3 x - 1/2 ) = 0
3x = 0+1/2
3x = 1/2
x = 1/2 : 3
x = 1/6
=> ( 1/2 y + 3/5 ) = 0
1/2y = 0 - 3/5
1/2 y = -3/5
y = -3/5 : 1/2
y = -6/5

Giải:
\(x-5\sqrt{x}\) = 0 (\(x\) ≥ 0)
\(\sqrt{x}\) .(\(\sqrt{x}\) - 5) = 0
\(\left[\begin{array}{l}\sqrt{x}=0\\ \sqrt{x}-5=0\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ \sqrt{x}=5\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x=25\end{array}\right.\)
Vậy \(x\in\) {0; 25}
\(x^5\) = 2\(x^7\)
\(x^5\) - 2\(x^7\) = 0
\(x^5\).(1 - 2\(x^2\)) = 0
\(\left[\begin{array}{l}x^5=0\\ 1-2x^2=0\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ 2x^2=1\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x^2=\frac12\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x=\pm\sqrt{\frac12}\end{array}\right.\)
Vậy \(x\) ∈ {- \(\sqrt{\frac12}\); 0; \(\sqrt{\frac12}\)}
+) Nếu \(-3\le x\Leftrightarrow|x-1|=1-x\)
\(|x+3|=-x-3\)
\(pt\Leftrightarrow1-x-x-3=5\)
\(\Leftrightarrow-2x-2=5\)
\(\Leftrightarrow-2x=7\)
\(\Leftrightarrow x=\frac{-7}{2}\left(tm\right)\)
+) Nếu \(-3< x< 1\Leftrightarrow|x-1|=1-x\)
\(|x+3|=x+3\)
\(pt\Leftrightarrow1-x+x+3=5\)
\(\Leftrightarrow4=5\) ( vô lí )
+) Nếu \(x\ge1\Leftrightarrow|x-1|=x-1\)
\(|x+3|=x+3\)
\(pt\Leftrightarrow x-1+x+3=5\)
\(\Leftrightarrow2x+2=5\)
\(\Leftrightarrow x=\frac{3}{2}\left(tm\right)\)
Vậy ....
Ta có:\(|x-1|\ge0\)
\(|x+3|\ge0\)
Theo bài:
\(|x-1|+|x+3|=5\)
\(\rightarrow x-1+x+3=5\)
\(\rightarrow\left(x+x\right)+[\left(-1\right)+3]=5\)
\(\rightarrow2x+2=5\)
\(\rightarrow2x=5-2\)
\(\rightarrow2x=3\)
\(\rightarrow x=3:2\)
\(\rightarrow x=\frac{3}{2}\)