Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
ban vào sách chuyên đề nâng cao phát triển toán là có bài này nha
![](https://rs.olm.vn/images/avt/0.png?1311)
chẳng cần k thích thì làm thôi
a) nghiệm pt của A là : x=10; x=13
=> với x<10; \(\hept{\begin{cases}x-10< 0\\x-13< 0\end{cases}=>A>0.}\)
với 10<=x<=13;\(\hept{\begin{cases}x-10\ge0\\x-13\le0\end{cases}\Rightarrow A\le0}\)
với x>13; \(\hept{\begin{cases}x-10>0\\x-13>0\end{cases}\Rightarrow A>0}\)
Kết luận: \(10\le x\le13\)x nguyên => x=10,11,12,13 . nếu hiểu thì làm tiếp
b) \(\left(x^2-4\right)\left(x^2-16\right)=\left(x-2\right)\left(x-4\right)\left(x+2\right)\left(x+4\right)\) nghiêm của (b) là x=-4,-2,2,4
=> với x<-4 \(\hept{\begin{cases}x^2-4< 0\\x^2-16< 0\end{cases}\Rightarrow A>0}\)
Với -4<=x<=-2 \(\hept{\begin{cases}x^2-4\ge0\\x^2-16\le0\end{cases}\Rightarrow A\le0}\)
với -2<x<2 \(\hept{\begin{cases}x^2-4< 0\\x^2-16< 0\end{cases}\Rightarrow A>0}\)
với 2<=x<=4\(\hept{\begin{cases}x^2-4\ge0\\x^2-16\le0\end{cases}}A\le0\)
với x>4 \(\hept{\begin{cases}x^2-4>0\\x^2-16>0\end{cases}\Rightarrow A>0}\)
Kết luân:\(\orbr{\begin{cases}-4\le x\le-2\\2\le x\le4\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
https://olm.vn/hoi-dap/detail/13844641.html
https://h.vn/hoi-dap/question/55030.html
bạn tham khảo hai link này nè
Học tốt
Nếu thấy hay thì cho mk 1 ckkk nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
a) (x - 2)(x - 6) < 0
=> Có 2 trường hợp
\(\left(1\right)\hept{\begin{cases}x-2< 0\\x-6>0\end{cases}\Rightarrow\hept{\begin{cases}x< 2\\x>6\end{cases}}}\Rightarrow x\in O\)
\(\left(2\right)\hept{\begin{cases}x-2>0\\x-6< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>2\\x< 6\end{cases}\Rightarrow2< x< 6}\)
b) (x2 - 2)(x2 - 10) < 0
=> Có 2 trường hợp
\(\left(1\right)\hept{\begin{cases}x^2-2< 0\\x^2-10>0\end{cases}\Rightarrow\hept{\begin{cases}x^2< 2\\x^2>10\end{cases}\Rightarrow}x^2\in O}\)
\(\left(2\right)\hept{\begin{cases}x^2-2>0\\x^2-10< 0\end{cases}\Rightarrow\hept{\begin{cases}x^2>2\\x^2< 10\end{cases}\Rightarrow}2< x^2< 10}\)
=> 2 < x2 < 10
=> x2 = 4 ; 9
=> x = 2 ; 3