Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
1/ \(x^3+2=3\sqrt[3]{3x-2}\)
Đặt \(\sqrt[3]{3x-2}=a\) thì ta có hệ
\(\hept{\begin{cases}x^3+2-3a=0\\a^3+2-3x=0\end{cases}}\)
Lấy trên - dưới ta được
\(x^3-a^3+3x-3a=0\)
\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+3\right)=0\)
\(\Leftrightarrow x=a\)
\(\Leftrightarrow x=\sqrt[3]{3x-2}\)
\(\Leftrightarrow x^3-3x+2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=5\)
\(\Leftrightarrow\sqrt{x-1-2.\sqrt{x-1}.2+4}+\sqrt{x-1-2.\sqrt{x-1}.3+9}=5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=5\)
\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|\)=5
bạn giải tiếp nhé

Xin lỗi bạn nha mình làm sai
Nhờ bạn sửa lại \(x\ge3\) và x<3 và nghiệm là \(1\le x\le5\) nha Trần Ngọc Thảo
Ta có:\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}\)(ĐK: \(x\ge1\))
\(=\sqrt{\left(x-1\right)-2\sqrt{x-1}.2+4}+\sqrt{\left(x-1\right)+2\sqrt{x-1}.3+9}\)
\(=\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}+3\right)^2}\)
\(=\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}+3\right|\)
Thay vào phương trình ta được:
\(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}+3\right|=5\)
\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\sqrt{x-1}+3=5\)(vì \(\sqrt{x-1}\ge0\Rightarrow\sqrt{x-1}+3>0\))
-TH: \(\sqrt{x-1}-2\ge0\Leftrightarrow\sqrt{x-1}\ge2\Leftrightarrow x-1\ge4\Leftrightarrow x\ge3\)thì ta có:
\(\sqrt{x-1}-2+\sqrt{x-1}+3=5\)
\(\Leftrightarrow2\sqrt{x-1}=4\)
\(\Leftrightarrow\sqrt{x-1}=2\)
\(\Leftrightarrow x-1=4\)
\(\Leftrightarrow x=5\)
-TH:\(\sqrt{x-1}-2< 0\Leftrightarrow x< 3\) thì ta có:
\(2-\sqrt{x-1}+\sqrt{x-1}+3=5\)
\(\Leftrightarrow5=5\)(luôn đúng \(\forall1\le x< 3\))
Vậy nghiệm của phương trình là \(1\le x< 3\) và \(x=5\)

ĐKXĐ: \(\left\{{}\begin{matrix}x+1\ge0\\2x+3\ge0\\x+20\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\ge-\frac{3}{2}\\x\ge-20\end{matrix}\right.\)
\(\sqrt{x+1}+\sqrt{2x+3}=\sqrt{x+20}\)
\(\Leftrightarrow\left(\sqrt{x+1}+\sqrt{2x+3}\right)^2=\left(\sqrt{x+20}\right)^2\)
\(\Leftrightarrow x+1+2\sqrt{\left(x+1\right)\left(2x+3\right)}+2x+3=x+20\)
\(\Leftrightarrow3x+4+2\sqrt{\left(x+1\right)\left(2x+3\right)}=x+20\)
\(\Leftrightarrow2\sqrt{\left(x+1\right)\left(2x+3\right)}=-2x+16\)
\(\Leftrightarrow2\sqrt{2x^2+5x+3}=16-2x\)
\(\Leftrightarrow\left\{{}\begin{matrix}16-2x\ge0\\4\left(2x^2+5x+3\right)=\left(16-2x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le8\\8x^2+20x+12=256-64x+4x^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le8\\4x^2+84x-244=0\end{matrix}\right.\)
còn lại bn tự làm nha

\(2-\sqrt{x^2+2x+9}=2x+3\)
\(\Rightarrow\sqrt{x^2+2x+9}=-\left(2x+1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}-\left(2x+1\right)\ge0\\x^2+2x+9=\left[-\left(2x+1\right)\right]^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ge-\frac{1}{2}\\x^2+2x+9=4x^2+4x+1\end{matrix}\right.\)
\(\Rightarrow4x^2+4x+1-x^2-2x-9=0\)
\(\Rightarrow3x^2+2x-8=0\)
\(\Rightarrow3x^2+6x-4x-8=0\)
\(\Rightarrow3x\left(x+2\right)-4\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(3x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\left(KTMĐK\right)\\x=\frac{4}{3}\left(TMĐK\right)\end{matrix}\right.\)
Vậy nghiệm của phương trình là 4/3
\(\sqrt{x^2-9}-3\sqrt{x-3}=0\left(ĐK:x\ge3\right)\)
\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x-3\right)}-3\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-3=0\\\sqrt{x+3}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x+3=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(c\right)\\x=6\left(c\right)\end{matrix}\right.\)
Vậy nghiệm của phương trình là \(S=\left\{3;6\right\}\)