\(\left(x-5\right)^4=\left(x-5\right)^6\) bỏ cái dấu dọc thẳn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2016

(x - 5)4 = (x - 5)6

=> (x - 5)4 - (x - 5)6 = 0

=> (x - 5)4. [1 - (x - 5)2 ] = 0

=> (x - 5)4 . (1 - x2 + 10x - 25) = 0

=> (x - 5)4 . (-x2 + 10x - 24) = 0

=> (x - 5)4. (x - 6)(x - 4) = 0

=> (x - 5)4 = 0 => x - 5 = 0 => x = 5

hoặc x - 6 = 0 => x = 6

hoặc x - 4 = 0 => x = 4

                                    Vậy x = 4 , x = 5 , x = 6

20 tháng 9 2018

a, \(\left(x-3\right)\left(x+2\right)>0\)

th1 : \(\hept{\begin{cases}x-3>0\\x+2>0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x>-2\end{cases}\Rightarrow}x>3}\)

th2 : \(\hept{\begin{cases}x-3< 0\\x+2< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x< -3\end{cases}\Rightarrow}x< -3}\)

vậy x > 3 hoặc x < -3

b, \(\left(x+5\right)\left(x+1\right)< 0\)

th1 : \(\hept{\begin{cases}x+5>0\\x+1< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-5\\x< -1\end{cases}\Rightarrow x\in\left\{-4;-3;-2\right\}}}\)

th2 : \(\hept{\begin{cases}x+5< 0\\x+1>0\end{cases}\Rightarrow\hept{\begin{cases}x< -5\\x>-1\end{cases}\Rightarrow}x\in\varnothing}\)

vậy x = -4; -3; -2

c, \(\frac{x-4}{x+6}\le0\)

xét \(\frac{x-4}{x+6}=0\)

\(\Rightarrow x-4=0;x\ne-6\)

\(\Rightarrow x=4\ne-6\)

xét \(\frac{x-4}{x+5}< 0\)

th1 : \(\hept{\begin{cases}x-4< 0\\x+5>0\end{cases}\Rightarrow\hept{\begin{cases}x< 4\\x>-5\end{cases}\Rightarrow}x\in\left\{3;2;1;0;-1;-2;-3;-4\right\}}\)

th2 : \(\hept{\begin{cases}x-4>0\\x+5< 0\end{cases}\Rightarrow\hept{\begin{cases}x>4\\x< -5\end{cases}\Rightarrow x\in\varnothing}}\)

d tương tự c

20 tháng 9 2018

\(\frac{\left(x-6\right)}{x-7}\ge0\)

Th1: x - 6 < 0

<=> x - 6 + 6 < 0 + 6

<=> x - 6 + 6 > 0 + 6

=> x < 6

Th2: x - 7

<=> x - 7 + 7 < 0 + 7

<=> x - 7 + 7 > 0 + 7

=> x > 7

=> x < 6 hoặc x > 7

21 tháng 7 2019

\(\frac{2^{4-x}}{16^5}=32^6\)

=> \(\frac{2^{4-x}}{\left(2^4\right)^5}=\left(2^5\right)^6\)

=> \(\frac{2^{4-x}}{2^{20}}=2^{30}\)

=> \(2^{4-x}=2^{30}.2^{20}\)

=> \(2^{4-x}=2^{50}\)

=> 4  - x = 50

=> x = 4 - 50 = -46

\(\frac{3^{2x+3}}{9^3}=9^{14}\)

=> \(\frac{3^{2x+3}}{\left(3^2\right)^3}=\left(3^2\right)^{14}\)

=> \(\frac{3^{2x+3}}{3^6}=3^{28}\)

=> \(3^{2x+3}=3^{28}.3^6\)

=> \(3^{2x+3}=3^{34}\)

=> 2x + 3 = 34

=> 2x = 34 - 3

=> 2x = 31

=> x = 31/2

18 tháng 6 2017

Bài 1:

a, \(2y.\left(y-\dfrac{1}{7}\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}2y=0\\y-\dfrac{1}{7}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=0\\y=\dfrac{1}{7}\end{matrix}\right.\)

Vậy \(y\in\left\{0;\dfrac{1}{7}\right\}\)

b, \(\dfrac{-2}{5}+\dfrac{2}{3}y+\dfrac{1}{6}y=\dfrac{-4}{15}\)

\(\Rightarrow\dfrac{5}{6}y=\dfrac{-4}{15}+\dfrac{2}{5}\)

\(\Rightarrow\dfrac{5}{6}y=\dfrac{2}{15}\)

\(\Rightarrow y=\dfrac{4}{25}\)

Vậy \(y=\dfrac{4}{25}\)

Chúc bạn học tốt!!!

18 tháng 6 2017

Bài 1:

a, \(2y\left(y-\dfrac{1}{7}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2y=0\\y-\dfrac{1}{7}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{1}{7}\end{matrix}\right.\)

Vậy...

b, \(\dfrac{-2}{5}+\dfrac{2}{3}y+\dfrac{1}{6}y=\dfrac{-4}{15}\)

\(\Rightarrow\dfrac{5}{6}y=\dfrac{2}{15}\)

\(\Rightarrow y=\dfrac{4}{25}\)

Vậy...

Bài 2:

a, \(x\left(x-\dfrac{4}{7}\right)>0\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-\dfrac{4}{7}>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x< 0\\x-\dfrac{4}{7}< 0\end{matrix}\right.\)

\(\Rightarrow x>\dfrac{4}{7}\left(x\ne0\right)\) hoặc \(x< \dfrac{4}{7}\left(x\ne0\right)\)

Vậy...

Các phần còn lại tương tự nhé

23 tháng 7 2019

1) \(\left|x\right|< 4\Leftrightarrow-4< x< 4\)

2) \(\left|x+21\right|>7\Leftrightarrow\orbr{\begin{cases}x+21>7\\x+21< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-14\\x< -28\end{cases}}\)

3) \(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)

4) \(\left|x+1\right|>2\Leftrightarrow\orbr{\begin{cases}x+1>2\\x+1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)

23 tháng 7 2019

\(\left|x+\frac{1}{2}\right|+\left|3-y\right|=0\)

Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|3-y\right|\ge0\end{cases}}\Rightarrow\)\(\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\)

Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}\)