Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có:
VT = |x + 1| + |x + 2| + |2x - 3| \(\ge\)|x + 1 + x + 2| + |3 - 2x| = |2x + 3| + |3 - 2x| \(\ge\)|2x + 3 + 3 - 2x| = 6
VP = 6
Dấu "=" xảy ra<=> \(\hept{\begin{cases}\left(x+1\right)\left(x+2\right)\ge0\\\left(2x+3\right)\left(3-2x\right)\ge0\end{cases}}\) => \(\orbr{\begin{cases}x\ge-1\\x\le-2\end{cases}}\)và \(-\frac{3}{2}\le x\le\frac{3}{2}\)
<=> \(-1\le x\le\frac{3}{2}\)
b) Ta có: VT = |x + 1| + |x - 2| + |x - 3| + |x - 5| = (|x + 1| + |5 - x|) + (|x - 2| + |3 - x|) \(\ge\)|x + 1 + 5 - x| + |x - 2 + 3 - x| = |6| + |1| = 7
VP = 7
Dấu "=" xảy ra<=> \(\hept{\begin{cases}\left(x+1\right)\left(5-x\right)\ge0\\\left(x-2\right)\left(3-x\right)\ge0\end{cases}}\) <=> \(\hept{\begin{cases}-1\le x\le5\\2\le x\le3\end{cases}}\) <=> \(2\le x\le3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Ta có :\(\left|x+6\right|+\left|4-x\right|\ge\left|x+6+4-x\right|=\left|10\right|=10\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+6\right)\left(4-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x+6\ge0\\4-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x+6\le0\\4-x\le0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-6\\x\le4\end{cases}}\)hoặc \(\hept{\begin{cases}x\le-6\\x\ge4\end{cases}}\)(Vô lí)
\(\Leftrightarrow-6\le x\le4\)
Vậy \(-6\le x\le4\)
b)Ta có :\(\left|x-1\right|+\left|x-4\right|=\left|x-1\right|+\left|4-x\right|\ge\left|x-1+4-x\right|=\left|3\right|=3\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)\left(x-4\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\x-4\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1\le0\\x-4\le0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge4\end{cases}}\)hoặc \(\hept{\begin{cases}x\le1\\x\le4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\ge4\\x\le1\end{cases}}\)
Vậy \(\orbr{\begin{cases}x\ge4\\x\le1\end{cases}}\)
Ta có : \(\left|x-1\right|+\left|x+5\right|+\left|2x-7\right|\)
\(=\left|x-1\right|+\left|x+5\right|+\left|7-2x\right|\)
\(\ge\left|x-1+x+5+7-2x\right|\)
\(=\left|11\right|=11\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)\left(x+5\right)\left(7-2x\right)\ge0\)
Lập bảng xét dấu :
\(-5\) \(1\) \(\frac{7}{2}\)
\(x\) | | |
\(x-1\) | \(-\) \(0\) \(-\) | \(+\)
\(x+5\) \(0\)\(-\) | \(+\) | \(+\)
\(7-2x\) | \(+\) | \(+\) \(0\) \(-\)
\(\left(x-1\right)\left(x+5\right)\left(7-2x\right)\) \(0\) \(+\) \(0\) \(-\) \(0\) \(-\)
Vậy \(-5\le x\le1\)
Bài này hơi nâng cao nên phải sử dụng kiến thức ngoài để giải ngắn gọn hơn.
Em có thể lên mạng để tìm hiểu thêm về lập bảng xét dấu