![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài chỉ chứng minh vế phải chia hết vế trái chứ k tìm n hay a nhé bạn
Nguyễn Ngọc Phương: Mình đâu có tìm $n,a$ đâu hả bạn? Mình đang chỉ ra TH sai mà???
Chả hạn, chứng minh $n(n+1)(n^2+1)\vdots 5$ thì có nghĩa mọi số tự nhiên/ nguyên $n$ đều phải thỏa mãn. Nhưng chỉ cần có 1 TH $n$ thay vào không đúng nghĩa là đề không đúng rồi.
![](https://rs.olm.vn/images/avt/0.png?1311)
a/
ĐK: \(x\ge1\)
Đặt \(\sqrt[3]{2-x}=t\Rightarrow2-x=t^3\Rightarrow x=2-t^3\)
\(\text{pt thành: }t=1-\sqrt{1-t^3}\)
\(\Leftrightarrow\sqrt{1-t^3}=1-t\Rightarrow1-t^3=\left(1-t\right)^2\)
\(\Leftrightarrow\left(t^3-1\right)+\left(t-1\right)^2=0\Leftrightarrow\left(t-1\right)\left(t^2+t+1\right)+\left(t-1\right)^2=0\)
\(\Leftrightarrow\left(t-1\right)\left(t^2+t+1+t-1\right)=0\)
\(\Leftrightarrow\left(t-1\right)\left(t^2+2t\right)=0\)
\(\Leftrightarrow t=1\text{ hoặc }t=0\text{ hoặc }t=-2\)
\(\Rightarrow\sqrt[3]{2-x}=1;0;-2\)
\(\Rightarrow x=1;2;10\)
Thử lại thấy x = 1;2;10 thỏa pt. KL nghiệm ...
a) Điều kiện: x - 1 \(\ge\) 0 <=> x \(\ge\) 1
Đặt: \(a=\sqrt[3]{2-x};b=\sqrt{x-1}\) (b \(\ge\) 0)
=> 2 - x = a3; x - 1 = b2 => a3 + b2 = 1
Phương trình đã cho trở thành: a = 1- b
=> (1 - b)3 + b2 = 1 <=> 1 - 3b2 + 3b - b3 + b2 = 1
<=> -b3 - 2b2 + 3b = 0 <=> b.(-3b2 - 2b + 3) = 0
<=> b= 0 hoặc -3b2 - 2b + 3 = 0
+) b = 0 (T/m) => x -1 = 0 <=> x = 1
+) -3b2 - 2b + 3 = 0 <=> b = \(\frac{1+\sqrt{10}}{-3}\) ( Loại ) hoặc b = \(\frac{\sqrt{10}-1}{3}\)(T/m)
b = \(\frac{\sqrt{10}-1}{3}\) => x = 1 + \(\frac{\sqrt{10}-1}{3}\)
Vậy pt có 2 nghiệm x = 1 ; x = 1 + \(\frac{\sqrt{10}-1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a.\\ \left(\sqrt{4.3}-\sqrt{16.3}-\sqrt{36.3}-\sqrt{64.3}\right)\\ =\left(2\sqrt{3}-4\sqrt{3}-6\sqrt{3}-8\sqrt{3}\right):2\sqrt{3}\\ =\frac{-16\sqrt{3}}{2\sqrt{3}}=-8\)
\(b.\\ =\left(2\sqrt{16.7}-5\sqrt{7}+2\sqrt{9.7}-2\sqrt{4.7}\right)\sqrt{7}\\ =\left(8\sqrt{7}-5\sqrt{7}+6\sqrt{7}-4\sqrt{7}\right)\sqrt{7}\\ =5\sqrt{7}.\sqrt{7}=5.7=35\)
\(c.\\ =\left(2\sqrt{9.3}-3\sqrt{16.3}+3\sqrt{25.3}-\sqrt{64.3}\right)\left(1-\sqrt{3}\right)\\ =\left(6\sqrt{3}-12\sqrt{3}+15\sqrt{3}-8\sqrt{3}\right)\left(1-\sqrt{3}\right)\\ =\sqrt{3}\left(1-\sqrt{3}\right)\\ =\sqrt{3}-3\)
\(d.\\ =7\sqrt{4.6}-\sqrt{25.6}-5\sqrt{9.6}\\ =14\sqrt{6}-5\sqrt{6}-15\sqrt{6}=-6\sqrt{6}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{x-3}-\sqrt{9x-27}+2\sqrt{16x-48}=6\)
\(\Leftrightarrow\sqrt{x-3}=1\)
hay x=4
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(=4\sqrt[3]{2}-9\sqrt[3]{2}++6\sqrt[3]{2}=\sqrt[3]{2}\)
b: \(=6\sqrt[3]{3}-15\sqrt[3]{3}+16\sqrt[3]{3}=7\sqrt[3]{3}\)
c: \(=-7\sqrt[3]{3}+3\sqrt[3]{3}+6\sqrt[3]{3}=2\sqrt[3]{3}\)
d: \(=8\sqrt[3]{5}-10\sqrt[3]{5}+2=-2\sqrt[3]{5}+2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B=\sqrt{18-4\sqrt{15}-4\sqrt{3}+2\sqrt{5}}-\sqrt{13-4\sqrt{3}}\)
\(=\sqrt{12+5+1-4\sqrt{15}-4\sqrt{3}+2\sqrt{5}}-\sqrt{12+1-4\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{5}+1-2\sqrt{3}\right)^2}-\sqrt{\left(2\sqrt{3}-1\right)^2}\)
\(=2\sqrt{3}-1-\sqrt{5}-2\sqrt{3}+1=-\sqrt{5}\)
Bạn ko nói rõ lớp mấy để đưa ra cách giải phù hợp.
1) Gọi chữ số hàng đơn vị là x (0 < x <9) => chữ số hàng chục là 3x
Số ban đầu có dạng 10.3x + x = 31x
Sau khi đổi chỗ số mới có dạng 10.x + 3x = 13x
Vì số mới nhỏ hơn số đã cho 18 nên có pt 31x - 13x = 18 <=> 18x = 18 => x = 1 (TMĐK)
Suy ra chữ số hàng chục là 3. Vậy số cần tìm là 31.
2) Tóm tắt thôi nhé.
Chữ số hàng chục là a, hàng đơn vị là b. => Số có dạng 10a + b và a+ b = 10
Số mới sau khi đổi chỗ là 10b + a
Giải hệ 2 pt: a + b = 10 và (10a + b) - (10b + a) = 36
được a = 7; b = 3. Vậy số cần tìm là 73.
3) Gọi a là số tự nhiên sau khi đã xóa đi 5. Số ban đầu là 10a + 5
xóa chữ số 5 thì số ấy giảm đi 1787 đơn vị nên ta có pt : 10a + 5 - 1787 = a
=> 9a = 1782 => a = 198 => Số ban đầu là 1985
![](https://rs.olm.vn/images/avt/0.png?1311)
câu đầu có \(3-12\sqrt{6}< 0\) nên không căn được nên đề bạn sai
\(\sqrt{31-8\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)
\(=\sqrt{4^2-2.4.\sqrt{15}+\left(\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}\right)^2-2.\sqrt{15}.3+3^2}\)
\(=\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}=\left|4-\sqrt{15}\right|+\left|\sqrt{15}-3\right|\)
\(=4-\sqrt{15}+\sqrt{15}-3=1\)
\(\sqrt{49-5\sqrt{96}}-\sqrt{49+5\sqrt{96}}=\sqrt{49-20\sqrt{6}}-\sqrt{49+20\sqrt{6}}\)
\(=\sqrt{5^2-2.5.2\sqrt{6}+\left(2\sqrt{6}\right)^2}-\sqrt{5^2+2.5.4\sqrt{6}+\left(2\sqrt{6}\right)^2}\)
\(=\sqrt{\left(5-2\sqrt{6}\right)^2}-\sqrt{\left(5+2\sqrt{6}\right)^2}=\left|5-2\sqrt{6}\right|-\left|5+2\sqrt{6}\right|\)
\(=5-2\sqrt{6}-5-2\sqrt{6}=-4\sqrt{6}\)
\(\sqrt{31-8\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)
\(=4-\sqrt{15}+\sqrt{15}-3\)
=1
X*3069=3069
X=3069/3069
X-1
X = 3069/3069
X = 1
k cho minh nha