Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, 5n+5n+2=650
=>5n+5n.52=650
=>5n(1+25)=650
=>5n.26=650
=>5n=25
=>5n=52
=>n=2
Vậy n=2

Bài 2 : Bài giải
a, \(2008^n=1=2008^0\)
\(\Rightarrow\text{ }n=0\)
b, \(32^{-n}\cdot16^n=1024\)
\(\left(2^5\right)^{-n}\cdot\left(2^4\right)^n=2^{10}\)
\(2^{-5n}\cdot2^{4n}=2^{10}\)
\(2^{-n}=2^{10}\)
\(\Rightarrow\text{ }n=-10\)
c, \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}\cdot\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2^n=\frac{4\cdot4^5}{3\cdot3^5}\cdot\frac{6\cdot6^5}{2\cdot2^5}=\frac{4^6}{3^6}\cdot\frac{6^6}{2^6}=2^6\cdot2^6=2^{12}\)
\(\Rightarrow\text{ }n=12\)

Câu 1:
Ta có: \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
\(\Leftrightarrow\left(x-1\right)^x\cdot\left(x-1\right)^2=\left(x-1\right)^x\cdot\left(x-1\right)^4\)
\(\Leftrightarrow\left(x-1\right)^2=\left(x-1\right)^4\)
\(\Leftrightarrow\left(x-1\right)^2-\left(x-1\right)^4=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left[1-\left(x-1\right)^2\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left[1-\left(x-1\right)\right]\cdot\left[1+\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left(1-x+1\right)\cdot\left(1+x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left(2-x\right)\cdot x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\2-x=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x=2\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
Vậy: x\(\in\){0;1;2}
Câu 2:
Ta có: \(\left(x+2\right)^2\ge0\forall x\)
\(\left(y-3\right)^2\ge0\forall y\)
Do đó: \(\left(x+2\right)^2+2\left(y-3\right)^2\ge0\forall x,y\)
mà \(\left(x+2\right)^2+2\left(y-3\right)^2< 4\)
và các số chính phương nhỏ hơn 4 là 0 và 1
nên \(\left(x+2\right)^2+2\left(y-3\right)^2\in\left\{0;1;2\right\}\)
*Trường hợp 1: (x+2)2=2(y-3)2=0
\(\Leftrightarrow\left(x+2\right)^2+2\left(y-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=3\end{matrix}\right.\)
*Trường hợp 2: \(\left(x+2\right)^2=0\) và \(\left(y-3\right)^2=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\\left[{}\begin{matrix}y-3=1\\y-3=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\\left[{}\begin{matrix}y=4\\y=2\end{matrix}\right.\end{matrix}\right.\)
*Trường hợp 3: \(\left(x+2\right)^2=1\) và \(\left(y-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+2=1\\x+2=-1\end{matrix}\right.\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\\y=3\end{matrix}\right.\)
Vậy: (x,y)\(\in\){(-2;3);(-2;4);(-2;2);(-1;3);(-3;3)}
Câu 1 bạn làm nhầm rồi.
$(x-1)^x(x-1)^2=(x-1)^x(x-1)^4$ không tương đương với $(x-1)^2=(x-1)^4$
Mà từ đây suy ra \(\left[\begin{matrix} (x-1)^x=0\\ (x-1)^2=(x-1)^4\end{matrix}\right.\)
Đối với TH $(x-1)^x=0$ thì có thể xảy ra 2TH: $x-1=0$ hoặc $x=0$

1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)

\(\frac{2^{4-x}}{16^5}=32^6\)
=> \(\frac{2^{4-x}}{\left(2^4\right)^5}=\left(2^5\right)^6\)
=> \(\frac{2^{4-x}}{2^{20}}=2^{30}\)
=> \(2^{4-x}=2^{30}.2^{20}\)
=> \(2^{4-x}=2^{50}\)
=> 4 - x = 50
=> x = 4 - 50 = -46
\(\frac{3^{2x+3}}{9^3}=9^{14}\)
=> \(\frac{3^{2x+3}}{\left(3^2\right)^3}=\left(3^2\right)^{14}\)
=> \(\frac{3^{2x+3}}{3^6}=3^{28}\)
=> \(3^{2x+3}=3^{28}.3^6\)
=> \(3^{2x+3}=3^{34}\)
=> 2x + 3 = 34
=> 2x = 34 - 3
=> 2x = 31
=> x = 31/2

1. Ta có: \(x\left(6-x\right)^{2003}=\left(6-x\right)^{2003}\)
=> \(x\left(6-x\right)^{2003}-\left(6-x\right)^{2003}=0\)
=> \(\left(6-x\right)^{2003}\left(x-1\right)=0\)
=> \(\orbr{\begin{cases}\left(6-x\right)^{2003}=0\\x-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}6-x=0\\x=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=6\\x=1\end{cases}}\)
Bài 2. Ta có: (3x - 5)100 \(\ge\)0 \(\forall\)x
(2y + 1)100 \(\ge\)0 \(\forall\)y
=> (3x - 5)100 + (2y + 1)100 \(\ge\)0 \(\forall\)x;y
Dấu "=" xảy ra khi: \(\hept{\begin{cases}3x-5=0\\2y+1=0\end{cases}}\) => \(\hept{\begin{cases}3x=5\\2y=-1\end{cases}}\) => \(\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{1}{2}\end{cases}}\)
Vậy ...

1/ 2x = 45.46
=> 2x = 45 + 6
=> 2x = 411
=> 2x = (22)11
=> 2x = 222
=> x = 22
vậy_
2/ 2x = 46.163
=> 2x = (22)6.(24)3
=> 2x = 212.212
=> 2x = 212 + 12
=> 2x = 224
=> x = 24
3/ 2x = 45.162
=> 2x = (22)5.(24)2
=> 2x = 210.28
=> 2x = 210 + 8
=> 2x = 218
=> x = 18
vậy_
\(\frac{1}{2^x}=4^5.4^3=4^{5+3}=4^8\)
\(\Rightarrow1=4^8.2^x=2^{2.8+x}=2^{16+x}\)
ta có 1 < 21 => 216+x < 21
=> 216+x = 20
=> 16+x=0
=> x= -16
a: \(x^6+x^4=0\)
\(\Leftrightarrow x^4\left(x^2+1\right)=0\)
=>x=0
b: \(32^{-x}\cdot16^x=1024\)
\(\Leftrightarrow\left(2^5\right)^{-x}\cdot\left(2^4\right)^x=1024\)
\(\Leftrightarrow2^{-5x+4x}=1024\)
\(\Leftrightarrow2^{-x}=1024\)
=>-x=10
hay x=-10(loại do x là số tự nhiên)