Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Biểu thức ko thể biểu diễn dưới dạng tích của các thừa số
b. (x-1)(4x+1)
c. -(3z^2-5y^2-6xy-3x^2)
d. x(y^2-2xy+x-9)
e. -(y-x)(y-x+2)
f. y^3+xy^2+3x^2y-y+x^2-x
HỌC TỐT.
![](https://rs.olm.vn/images/avt/0.png?1311)
a.Ta có:\(2x^2-4xy+4y^2+2x+1=0\)
\(\Rightarrow\left[x^2-2x\left(2y\right)+\left(2y\right)^2\right]+\left(x^2+2x+1\right)=0\)
\(\Rightarrow\left(x-2y\right)^2+\left(x+1\right)^2=0\)
Dấu "=" xảy ra khi và chỉ khi x-2y=0 và x+1=0
Suy ra x=-1;y=-1/2
b.Ta có:\(x^2-6x+y^2-6y+21=3\)
\(\Rightarrow\left(x^2-6x+9\right)+\left(y^2-6y+9\right)+3-3=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y-3\right)^2=0\)
Dấu "=" xảy ra khi và chỉ khi x-3=y-3=0
Suy ra x=y=3
c.Ta có:\(2x^2-8x+y^2-2xy+16=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-4\right)^2=0\)
Dấu "=" xảy ra khi và chỉ khi:x-y=x-4=0
Suy ra x=y=4
a) 2x2 - 4xy + 4y2 + 2x + 1 = 0
<=> x2 - 4xy + 4y2 + x2 + 2x + 1 = 0
<=> ( x - 2y )2 + ( x + 1 )2 = 0
<=> \(\hept{\begin{cases}x-2y=0\\x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-\frac{1}{2}\end{cases}}\)
b) x2 - 6x + y2 - 6y + 21 = 3
<=> x2 - 6x + y2 - 6y + 21 - 3 = 0
<=> x2 - 6x + y2 - 6y + 18 = 0
<=> x2 - 6x + 9 + y2 - 6y + 9 = 0
<=> ( x - 3 )2 + ( y - 3 )2 = 0
<=> \(\hept{\begin{cases}x-3=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=3\end{cases}}\)
c) 2x2 - 8x + y2 - 2xy + 16 = 0
<=> x2 - 2xy + y2 + x2 - 8x + 16 = 0
<=> ( x - y )2 + ( x - 4 )2 = 0
<=> \(\hept{\begin{cases}x-y=0\\x-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=4\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
3x2 + 2x - 1 = 0
<=> 3x2 + 3x - x - 1 = 0
<=> 3x ( x + 1 ) - ( x + 1 ) = 0
<=> ( x + 1 ) ( 3x -1 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\3x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{3}\end{cases}}}\)
KL : Tập nghiệp ...........................
\(3x^2+2x-1=0\)
Ta có \(\Delta=2^2+4.3.1=16,\sqrt{\Delta}=4\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-2+4}{6}=\frac{1}{3}\\x=\frac{-2-4}{6}=-1\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
I=(2x-1)^2+(x-3)^2
=4x^2-4x+1+x^2-6x+9
=5x^2-10x+10
=5(x^2-2x+1)+5
=5(x-1)^2+5
Vì 5(x-1)^2>=0 với mọi x nên I= 5(x-1)^2+5>=5 với mọi x
Dấu bằng xảy ra khi:(x-1)^2=0
x-1=0
x=1
Vậy GTNN cua biểu thức T=5 khi x=1
c,M=(x-2)(x-5)(x^2-7x+10)
=(x^2-7x+10)^2
Vì M=(x^2-7x+10)^2>=0 với mọi x nên dấu bằng xảy ra khi:
x^2-7x+10=0
(x-2)(x-5)=0
Suy ra:x=2 hoặc x=5
Vậy GTNN của M là 0 tại x=2 hoặc x=5
d,T=(4x^2+ 8xy+4y^2)+(x^2 -2x+1)+(y^2+2y+1) -2
=4(x^2+2xy+y^2)+ (x-1)^2+ (y+1)^2 -2
=4(x+y)^2 +(x-1)^2 +(y+1)^2 -2
bạn tự lập luận 4(x+y)^2 +(x-1)^2 +(y+1)^2 -2 >=-2 với mọi x
Dấu = xảy ra khi:x=1,y=-1
Vậy GTNN của T là -2 tại x=1,y=-1
b,ý b dễ rồi mình cho bạn đáp án
GTNN cua N là 1 tại x=0
GTNN là giá trị nhỏ nhất.Chúc bạn học tốt
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1: mình ko bik yêu cầu đề bài nên mình ko làm.
Bài 2:
a/ \(\left(2x+5\right)^2=\left(2x\right)^2+2.2x.5+5^2\)
\(=4x^2+20x+25\)
b/ \(\left(3x+4\right)^2=\left(3x\right)^2+2.3x.4+4^2\)
\(=9x^2+24x+16\)
c/\(\left(3x+5y+\frac{1}{2}\right)^2\)
Đối với bình phương của một tổng gồm ba hạng tử, ta có công thức như sau:
(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=a2+b2+c2+2(ab+bc+ac)
\(\left(3x+5y+\frac{1}{2}\right)^2=9x^2+25y^2+\frac{1}{4}+2\left(15x+\frac{3x}{2}+\frac{5y}{2}\right)\)
Bài 3:
a/ A= x2+10x+30
A= x2+2.5x+25+5
A= x2+2.5.x+52+5
A=(x+5)2+5
Ta có (x+5)2 luôn luôn > hoặc = 0
=>(x+5)2+5 luôn luôn lớn hơn 0 (vì 5>0)
=> A luôn dương.
b/ \(B=3x^2+6x+19\\ B=\left(\sqrt{3x}\right)^2+2x.\sqrt{3}.\sqrt{3}+3+16\)
\(B=\left(\sqrt{3x}+\sqrt{3}\right)^2+16\)
(Tương tự như câu A)
Ta có \(\left(\sqrt{3x}+\sqrt{3}\right)^2\)luôn luôn > hoặc = 0
=> \(\left(\sqrt{3x}+\sqrt{3}\right)^2+16\) luôn luôn > 0 (vì 16 > 0)
=> B luôn dương.
c/ \(C=4x^2+10x+32\\ C=\left(2x\right)^2+2.2x.\frac{5}{2}+\frac{25}{4}+\frac{103}{4}\\C=\left(2x+\frac{5}{2}\right)^2+\frac{103}{4} \)
(Chứng minh tương tự câu a, b)
Chúc bạn học tốt!!
mk giúp bạn bài 3 còn bài 1, 2 tự làm nha
a , A = x2 + 10x +30
= (x2 + 2 . 5 . x +52 ) +5
= (x+5)2 + 5
Vì (x+5)2 >= 0 (luôn đúng)
=> (x+5)2 + 5 luôn luôn dương
a) VÌ 2x2 + y2 - 2y - 6x + 2xy + 5 = 0 nên
2(2x2 + y2 - 2y - 6x + 2xy + 5) = 0
4x^2+2y^2-4y-12x+4xy+10=0
(4x^2+4xy+y^2)-6(2x+y)+9+(y^2-2y+1)=0
(2x+y)^2-6(2x+y)+9+(y-1)^2=0
(2x+y-3)^2+(y-1)^2=0(*)
vì (2x+y-3)^2>=0 và(Y-1)^2>=0nên (*) xảy ra khi
(2x+y-3)^2=0<=>2x-2=0<=>x=1
(Y-1)^2=0<=>y=1
x=1 y=1