K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344c, Tìm 3 số x,y,z...
Đọc tiếp

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  

2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0

b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344

c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17

3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0

b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A

c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

2
19 tháng 12 2019

1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)

Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu a + b + c + d = 0

=> a + b = -(c + d)

=> b + c = (-a + d) 

=> c + d = -(a + b)

=> d + a = (-b + c)

Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4

Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)

Khi đó M = 1 + 1 + 1 + 1 = 4

2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)

Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)

b) 72x + 72x + 3 = 344

=> 72x + 72x.73 = 344

=> 72x.(1 + 73) = 344

=> 72x  = 1

=> 72x = 70

=> 2x = 0 => x = 0

c) Ta có :

 \(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)

=>  2x + 2 = 14 => x = 6 ; 

2y - 4 = 6 => y = 5 ; 

6 + 5 + z = 17 => z = 6 

Vậy x = 6 ; y = 5 ; z = 6

3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau) 

=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;  

Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0 

Vậy c = 0 hoặc b = 0

c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau) 

=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)

Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)

Vậy P = 8

9 tháng 1 2020

2. b) \(7^{2x}+7^{2x+3}=344\)

        \(7^{2x}\cdot\left(1+7^3\right)=344\)

        \(7^{2x}\cdot\left(1+343\right)=344\)

        \(7^{2x}\cdot344=344\)

               \(7^{2x}=1\)  

               \(7^{2x}=7^0\)

              \(2x=0\)

               \(x=0\)

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3\)

=>\(\begin{cases}x=-3\cdot2=-6\\ y=-3\cdot5=-15\end{cases}\)

b: 7x=3y

=>\(\frac{x}{3}=\frac{y}{7}\)

mà x-y=-16

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{-16}{-4}=4\)

=>\(\begin{cases}x=4\cdot3=12\\ y=4\cdot7=28\end{cases}\)

25 tháng 8

x=−6 và y=−15.

x=−12 và y=−28.

được ko bạn

25 tháng 8

a) Theo tích chất của dãy tỉ số bằng nhau có

x/3=y/7=xy/3.7=84/21=4

>x/3=4 >x=3.4=12

>y/7=4 >y=4.7=28

Vậy...

b)ta có

x/y=13/12 > x/13=y/12

ADTCCDTSBN có

x/13=y/12=2x-y/26-12=15/14

>x/13=15/14 >x=195/14

>y/12=15/14> y=90/7 (đoạn này tự nhân lại là ra bạn nhé)

Vậy x=195/14 y=90/7

2 tháng 7 2017

Câu a,b,c,d link đây Câu hỏi của (っ◔◡◔)っ ♥ GDragon Huyền Tồ ♥

e) \(\left|3x-1\right|=\left(9,103-4,659\right):\dfrac{3}{2}\)

\(\left|3x-1\right|=4,444:\dfrac{3}{2}\)

\(\left|3x-1\right|=\dfrac{4444}{1000}:\dfrac{3}{2}\)

\(\left|3x-1\right|=\dfrac{4444.2}{1000.3}=\dfrac{4444}{1500}\)

____* \(3x-1=\dfrac{4444}{1500}\)

\(3x=\dfrac{4444}{1500}+1\)

\(3x=\dfrac{5944}{1500}\)

\(x=\dfrac{5944}{4500}=\dfrac{1486}{1125}\)

____* \(3x-1=-\dfrac{4444}{1500}\)

\(3x=-\dfrac{4444}{1500}+1\)

\(x=-\dfrac{2944}{4500}=-\dfrac{736}{1125}\)

P/s: ( Nếu có sai chỗ nào thì sửa giùm nha đang cấn trận đánh bang bang hay rồi nên phải nhanh )

2 tháng 7 2017

Mk làm câu cuối rồi bạn làm đúng đó khỏi lo

a: ta có: \(\frac{x}{y}=\frac34\)

=>\(\frac{x}{3}=\frac{y}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{x}{3}=\frac{y}{4}=\frac{2x+5y}{2\cdot3+5\cdot4}=\frac{52}{6+20}=\frac{52}{26}=2\)

=>\(\begin{cases}x=2\cdot3=6\\ y=2\cdot4=8\end{cases}\)

b: \(\frac{2x}{3y}=-\frac13\)

=>-6x=3y

=>\(-2x=y\)

2x+5y=9

=>\(2x+5\cdot\left(-2x\right)=9\)

=>2x-10x=9

=>-8x=9

=>\(x=-\frac98\)

\(y=-2x=-2\cdot\frac{-9}{8}=\frac94\)

c: 21x=9y

=>7x=3y

=>\(\frac{x}{3}=\frac{y}{7}\)

mà x-y=24

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{24}{-4}=-6\)

=>\(\begin{cases}x=-6\cdot3=-18\\ y=-6\cdot7=-42\end{cases}\)

@ phan minh hân nếu bn dùng chatgpt hoặc AI để trl thì xin vui lòng ghi thêm chữ tham khảo ở cuối câu ạ

a, 24-x=32=25

=> 4-x=5

<=> x=-1

b, (x+1,5)2+(y-2,5)10=0

Vì (x+1,5)2\(\ge\)0,   (y-2,5)10\(\ge\)0

\(\Rightarrow\hept{\begin{cases}x+1,5=0\\y-2,5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1,5\\y=2,5\end{cases}}}\)

5 tháng 7 2019

a)\(2^{4-x}\)=32

=>\(2^{4-x}\)=32=\(2^5\)

=>4-x=5

=>x=4-5=-1

=>x=-1

a: \(\left|x-1.5\right|+\left|2.5-x\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1.5=0\\2.5-x=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

b: \(\left(x-\dfrac{1}{2}\right)^2=0\)

=>x-1/2=0

hay x=1/2

c: \(2^x=16\)

nên \(2^x=2^4\)

=>x=4

d: \(3^{x+1}=9^x\)

\(\Leftrightarrow3^{2x}=3^{x+1}\)

=>2x=x+1

=>x=1

e: \(2^{3x+2}=4^{x+5}\)

=>3x+2=2x+10

=>x=8