Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x_1-1}{9}=\frac{x_2-2}{8}=\frac{x_3-3}{7}=...=\frac{x_9-9}{1}=\frac{x_1-1+x_2-2+...+x_9-9}{9+8+7+...+1}\)\(=\frac{\left(x_1+x_2+...+x_9\right)-45}{45}=\frac{90-45}{45}=\frac{45}{45}=1\)
Từ \(\frac{x_1-1}{9}=1\Rightarrow x_1=1\cdot9+1=10\)
Vậy \(x_1=10\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo bài ra ta có : \(\dfrac{x1-1}{9}=\dfrac{x2-2}{8}=\dfrac{x3-3}{7}=......=\dfrac{x9-9}{1}\)
= \(\dfrac{\left(x1-1\right)+\left(x2-2\right)+\left(x3-3\right)+....+\left(x9-9\right)}{9+8+7+....+2+1}\)
=\(\dfrac{\left(x1+x2+x3+....+x9\right)-\left(1+2+3+...+9\right)}{9+8+7+...+1}\)
= \(\dfrac{90-45}{45}=\dfrac{45}{45}=1\)
=> \(x1=9.1+1=10\)
\(x2=8.1+2=10\)
\(x3=7.1+3=10\)
\(x4=6.1+4=10\)
\(x5=5.1+5=10\)
\(x6=4.1+6=10\)
\(x7=3.1+7=10\)
\(x8=2.1+8=10\)
\(x9=1.1+9=10\)
Vậy \(x1,x2,x3,x4,x5,...,x9\) tất cả đều bằng 10
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x_1-1}{2010}=...=\frac{x_{2010}-2010}{1}=\frac{x_1+x_2+...+x_{2010}-\left(1+2+...+2010\right)}{2010+2009+...+1}\)
\(=\frac{2\left(1+2+...+2010\right)-\left(1+2+...+2010\right)}{1+2+...+2010}=1\)
Vậy thay vào ta được: \(x_1=x_2=...=x_{2010}=2011\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x_1-1}{2010}=\frac{x_2-2}{2009}=...=\frac{x_{2010}-2010}{1}=\frac{\left(x_1-1\right)+\left(x_2-2\right)+...+\left(x_{2010}-2010\right)}{1+2+...+2010}\) (TC DTSBN)
\(=\frac{\left(x_1+x_2+...+x_{2010}\right)-\left(1+2+...+2010\right)}{1+2+...+2010}=\frac{2.\left(1+2+...+2010\right)-\left(1+2+...+2010\right)}{1+2+...+2010}=1\)
\(\Rightarrow x_1-1=2010;x_2-1=2009;....;x_{2010}-2010=1\)
=> x1 = x2 = x3 =..... = x2010 = 2011