Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi giao điểm là A, thay tọa độ tham số d1 vào d2:
\(t-2\left(2-t\right)+m=0\Leftrightarrow3t+m-4=0\Rightarrow t=\dfrac{-m+4}{3}\)
\(\Rightarrow A\left(\dfrac{-m+4}{3};\dfrac{m+2}{3}\right)\)
\(\Rightarrow OA=\sqrt{\left(\dfrac{-m+4}{3}\right)^2+\left(\dfrac{m+2}{3}\right)^2}=2\)
\(\Leftrightarrow m^2-2m-8=0\Rightarrow\left[{}\begin{matrix}m=4\\m=-2\end{matrix}\right.\)
b. Bạn không đưa 4 đáp án thì không ai trả lời được câu hỏi này. Có vô số đường thẳng cách đều 2 điểm, chia làm 2 loại: các đường thẳng song song với AB và các đường thẳng đi qua trung điểm của AB
c. Tương tự câu b, do 3 điểm ABC thẳng hàng nên có vô số đường thẳng thỏa mãn, là các đường thẳng song song với AB
b)
A. x-y+2=0
B. x+2y=0
C.2x-2y+10=0
D. x-y+100=0
c)
A. x-3y+4=0
B. -x+y+10=0
C. x+y=0
D. 5x-y+1=0
![](https://rs.olm.vn/images/avt/0.png?1311)
Từ pt trên suy ra \(y=x+1\) thay xuông dưới:
\(\left(m-1\right)x^2+\left(x+1\right)^2+x-2\left(x+1\right)+2m-3=0\)
\(\Leftrightarrow mx^2+x+2m-4=0\)
Đặt \(f\left(x\right)=mx^2+x+2m-4=0\)
Để phương trình có 2 nghiệm thỏa mãn \(x_1< x_2< 2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1-4m\left(2m-4\right)>0\\a.f\left(2\right)=m\left(4m+2+2m-4\right)>0\\\frac{x_1+x_2}{2}=\frac{-1}{2m}< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-8m^2+16m+1>0\\m\left(6m-2\right)>0\\\frac{4m+1}{2m}>0\end{matrix}\right.\) \(\Leftrightarrow\frac{1}{3}< m< \frac{4+3\sqrt{2}}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
Tọa độ giao điểm của Δ1 và Δ2 là:
\(\left\{{}\begin{matrix}2x+y=4\\5x-2y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{9}\\y=\dfrac{26}{9}\end{matrix}\right.\)
Thay x=5/9 và y=26/9 vào Δ3, ta được:
\(\dfrac{5}{9}m+\dfrac{26}{3}-2=0\)
=>5/9m=-20/3
hay m=-12
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Ta có: \(\overrightarrow{u_d}=(-2,1)\Rightarrow \overrightarrow{n_d}=(1,2)\)
Xét $(d)$: \(\left\{\begin{matrix} x=1-2t\\ y=2+t\end{matrix}\right.\Rightarrow x+2y=5\) (đây chính là pt tổng quát của $(d)$)
$I=(d)\cap (d_1)$ nên: \(\left\{\begin{matrix} x_I+2y_I=5\\ x_I+y_I-3=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x_I=1\\ y_I=2\end{matrix}\right.\)
$M\in Ox$ nên gọi tọa độ của $M$ là $(a,0)$
$MI=\sqrt{(a-1)^2+(0-2)^2}=3$
$\Rightarrow (a-1)^2=5$
$\Rightarrow a=1\pm \sqrt{5}$
Vậy tọa độ $M$ là $(1\pm \sqrt{5}, 0)$
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn tham khảo:
Câu hỏi của Lê Ngọc Cương - Toán lớp 9 | Học trực tuyến
![](https://rs.olm.vn/images/avt/0.png?1311)
Chuyển pt d về dạng tổng quát: \(3x+y-7=0\)
Thay tọa độ điểm A vào: \(\Rightarrow3.1+2-7=-1< 0\)
Thay tọa độ điểm B vào, để 2 điểm nằm cùng phía so với d thì:
\(-6+m-7< 0\Rightarrow m< 13\)