K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2017

\(x^2+x-p=0\\ \Leftrightarrow x\left(x+1\right)=p\)

\(\Rightarrow p⋮2\)

Mà p là SNT \(\Rightarrow p=2\)

\(\Rightarrow x^2+x=2\\ \Rightarrow x^2+x-2=0\\ \Leftrightarrow\left(x^2-1\right)+\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

21 tháng 12 2017

x2 + x - p = 0
=> x. ( x + 1 ) = p

Suy ra x và x + 1 là các ước của p
Mà x và x + 1 là 2 số nguyên liên tiếp và p là số nguyên tố nên
x = 1 hoặc x + 1 = 1
+) Với x = 1 thì x + 1 = 2
=> p = 1 . 2 = 2 ( thỏa mãn )
+) Với x + 1 = 1 thì x = 0
=> p = 0 . 1 = 0 ( không thỏa mãn )

Vậy x = 1

26 tháng 3 2018

đc sài máy tính bỏ túi để giải ko bạn

26 tháng 3 2018

bài này đc sài máy tính hem. cách sài máy tính lẹ hơn

26 tháng 3 2018

tùy bạn

14 tháng 5 2018

\(x^2-\left(5+y\right)x+2+y=0\Leftrightarrow x^2-\left(5+y\right)x+5+y-1=2\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-\left(y+5\right)\left(x-1\right)=2\)

\(\Leftrightarrow\left(x-1\right)\left(x-y-4\right)=2=1\cdot2=2\cdot1=\left(-1\right)\left(-2\right)=\left(-2\right)\left(-1\right)\)

Giải phương trình tích trên ta được 4 tập nghiệm là \(\left(x;y\right)\in\left\{\left(2;-4\right);\left(3;-2\right);\left(0;-2\right);\left(-1;-4\right)\right\}\) 

21 tháng 2 2019

Nghĩ ra rồi -_-

Phương trình trên có nghiệm khi và chỉ khi \(\Delta=\left(5+y\right)^2-4\left(2+y\right)\ge0\)

\(\Leftrightarrow y^2+6y+17\ge0\) (luôn đúng do VT >= 8 với mọi y)

Để phương trình có nghiệm nguyên thì \(\Delta\)là số chính phương.

Đặt \(y^2+6y+17=k^2\)

Suy ra \(\left(y+3\right)^2+8=k^2\) (\(k\inℕ\))

\(\Leftrightarrow\left(y+3\right)^2-k^2=8\)

\(\Leftrightarrow\left(y+3-k\right)\left(y+3+k\right)=8\)

Lập bảng ước số là ra.

27 tháng 2 2019

Viết pt trên thành pt bậc 2 đối với x:

\(2x^2-x\left(y+1\right)-\left(2y-1\right)=0\) (1)

(1) có nghiệm \(\Leftrightarrow\Delta=\left(y+1\right)^2+8\left(2y-1\right)\ge0\)

\(\Leftrightarrow y^2+18y-7\ge0\Leftrightarrow\orbr{\begin{cases}y\le-9-2\sqrt{22}\\y\ge-9+2\sqrt{22}\end{cases}}\)

Ta cần có \(\Delta\) là số chính phương.Tức là:

\(y^2+18y-7=k^2\Leftrightarrow\left(x+9\right)^2-k^2=88\)

\(\Leftrightarrow\left(x+9-k\right)\left(x+9+k\right)=88\)

Gắt gắt,đợi tí nghĩ cách khác xem sao,cách này thử sao nổi -_-

5 tháng 12 2024

2) Ta có: 

xy2 + 2xy -243y +x = 0

 x( y2 + 2y + 1) -243y = 0

 x(y+1)2 = 243y

 x = 243y(y+1)2

Vì x thuộc Z nên 243y(y+1)2 thuộc Z, mà Ư CLN(y,y+1) = 1  243 chia hết (y+1)2 

 (y+1)2 thuộc {9; 81}

 y+1 thuộc {3; -3; 9; -9}

 y thuộc {2; -4; 8; -10}

 x thuộc {54; -108; 24; -30}

Vậy (x; y) = (54; 2) (24; 8) (-108;-4) (-30;-10)

 

10 tháng 5 2016

\(9x^2+42xy+49y^2+x^2+14x+49+y^2-6y+9-1<0\)

\(\left(3x+7y\right)^2+\left(x+7\right)^2+\left(y-3\right)^2<1\)

Vậy y=3; x=-7